

CONTAMINATION ASSESSMENT REPORT

FLYING CLUB SITE, BUILDING A-127 NAVAL AIR STATION KEY WEST BOCA CHICA FIELD, KEY WEST, FLORIDA

CONTRACT TASK ORDER NO. 098 CLEAN - DISTRICT I CONTRACT NO. N62467-89-D-0317

APRIL 1994

SOUTHERN DIVISION NAVAL FACILITIES ENGINEERING COMMAND NORTH CHARLESTON, SOUTH CAROLINA 29419-9010

April 8, 1994

Southern Division Naval Facilities Engineering Command ATTN: Mr. Gabriel Magwood, Code 1849 2155 Eagle Drive North Charleston, South Carolina 29418

SUBJECT:

Contamination Assessment Report; Transmittal

Flying Club Site, Building A-127

Naval Air Station (NAS), Key West, Florida Contract No. N62467-89-D-0317, CTO No. 098.

Dear Gabriel:

Enclosed for your review are seven copies of the Contamination Assessment Report (CAR) for the Flying Club site (Building A-127) at NAS Key West, Florida. These include two copies for the Florida Department of Environmental Protection (FDEP) and two copies for Bill Hunt at NAS Key West. Your comments have been incorporated into the document.

The six-month holding time for groundwater laboratory analyses will expire April 18, 1994. Copies must be forwarded to FDEP before this date. We understand that you will forward the distribution copies. Should you have any questions, or if additional information is required, please contact me at your earliest convenience.

Very truly yours,

ABB ENVIRONMENTAL SERVICES, INC.

Roger Durham Senior Geologist

Enclosures

cc:

File

Mark Diblin

08508-001

February 2, 1993

Southern Division
Naval Facilities Engineering Command
ATTN: Mr. Gabriel Magwood, Code 1849
2155 Eagle Drive
North Charleston, South Carolina 29418

SUBJECT:

Contamination Assessment Report; Transmittal

Flying Club Site, Building A-127

Naval Air Station (NAS), Key West, Florida Contract No. N62467-89-D-0317, CTO No. 098.

Dear Gabriel:

Enclosed for your review are two copies of the Contamination Assessment Report (CAR) for the Flying Club site (Building A-127) at NAS Key West, Florida. Two copies each will be forwarded to Bill Hunt at NAS Key West and the Florida Department of Environmental Protection upon your approval.

Should you have any questions, or if additional information is required, please contact me at your earliest convenience.

Very truly yours,

ABB ENVIRONMENTAL SERVICES, INC.

ohn V. Pittman

Task Order Manager

Enclosures

cc:

File

Jim Williams Roger Durham

08508-001

CONTAMINATION ASSESSMENT REPORT

FLYING CLUB SITE, BUILDING A-127 NAVAL AIR STATION KEY WEST BOCA CHICA FIELD, KEY WEST, FLORIDA

Contract Task Order No. 098

Contract No. N62467-89-D-0317

Prepared by:

ABB Environmental Services, Inc. 2590 Executive Center Circle, East Taliahassee, Florida 32301

Authors:

Jay Koch Roger Durham

Prepared for:

Department of the Havy, Southern Division Naval Facilities, Engineering Command 2155 Eagle Drive North Charleston, South Carolina 29418

Gabriel Magwood, Code 1849, Engineer-in-Charge

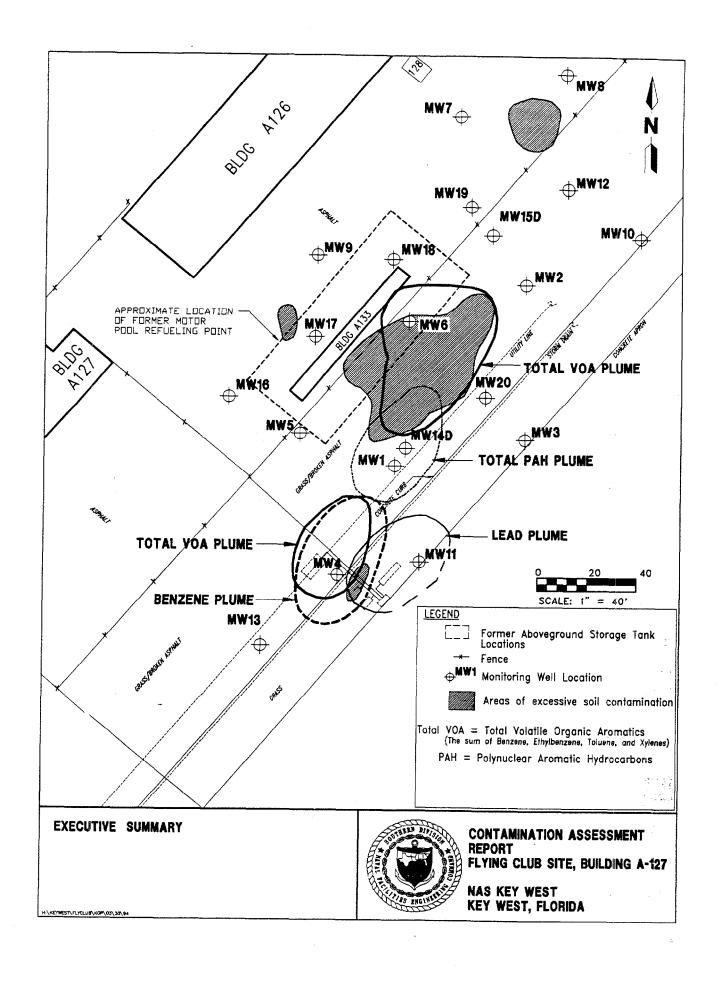
FOREWORD

Subtitle I of the Hazardous and Solid Waste Amendments (HSWA) of 1984 to the Solid Waste Disposal Act (SWDA) of 1965 established a national regulatory program for managing underground storage tanks (USTs) containing hazardous materials, especially petroleum products. Hazardous wastes stored in USTs were already regulated under the Resource Conservation and Recovery Act (RCRA) of 1976, which was also an amendment to SWDA. Subtitle I requires that the U.S. Environmental Protection Agency (USEPA) promulgate UST regulations. The program was designed to be administered by the individual States, who were allowed to develop more stringent standards, but not less stringent standards. Local governments were permitted to establish regulatory programs and standards that are more stringent, but not less stringent than either State or Federal regulations. The USEPA UST regulations are found in the Code of Federal Regulations, Title 40, Part 280 (40 CFR 280) (Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks) and Title 40 CFR 281 (Approval of State Underground Storage Tank Programs). Title 40 CFR 280 was revised and published on September 23, 1988, and became effective December 22, 1988.

The Navy's UST program policy is to comply with all Federal, State, and local regulations pertaining to USTs. This report was prepared to satisfy the requirements of the Florida Department of Environmental Protection (formerly the Florida Department of Environmental Regulation) Chapter 17-770, Florida Administrative Code (FAC) (State Underground Petroleum Environmental Response) regulations on petroleum contamination in Florida's environment as a result of spills or leaking tanks or piping.

Questions regarding this report should be addressed to the Commanding Officer, Naval Air Station Key West, Boca Chica Field, Key West, Florida, or to Southeffn Division, Naval Facilities Engineering Command (SOUTHNAVFACENGCOM), Gabriel Magwood, Code 1849, at AUTOVON 563-0658 or (803) 743-0658.

EXECUTIVE SUMMARY


The Boca Chica Flying Club is the former location of four aboveground storage tanks (ASTs) and associated dispensers and piping, which contained aviation gasoline (AVGAS). The ASTs, fuel dispensers, and associated piping were removed from the site in February 1992. Three ASTs had capacities of 560 gallons; the fourth AST had a capacity of 1,000 gallons. According to facility personnel, the Flying Club was in operation from the until the late 1960's. The suspected cause of petroleum contamination at the site was overfilling of the ASTs. Building A-133, located approximately 70 feet north of the former ASTs (see Executive Summary Figure), is a remnant of a former motor pool refueling point and was identified as another possible source of contamination at the site. Southern Division, Naval Facilities Engineering Command (SOUTHNAVFACENGCOM) contracted ABB Environmental Services, Inc. (ABB-ES), to perform a contamination assessment (CA) at the site and to prepare a contamination assessment report (CAR). ABB-ES conducted the CA from October to December 1993.

Seventy-one soil borings and 20 monitoring wells were placed at the site to assess the degree and extent of soil and groundwater contamination. Soil samples were collected and analyzed for volatile organic compounds (VOCs) by organic vapor analyzer (OVA) headspace analysis. Groundwater samples were collected from each monitoring well at the site and analyzed for kerosene analytical group constituents as defined in Chapter 17-770, Florida Administrative Code (FAC). Groundwater levels in monitoring wells were recorded to assess the groundwater flow direction, which is to the northeast.

OVA headspace analysis of soil samples indicated four areas of excessively contaminated soil (see Executive Summary Figure). Soil with VOC concentrations greater than 50 parts per million (ppm) is defined as being excessively contaminated (Chapter 17-770, FAC). The largest area of excessive soil contamination is located southeast of Building A-133. This area is approximately 70 feet long and 40 feet wide. Three smaller isolated areas were also identified: (1) the former AVGAS ASTs location, (2) the northwest side of Building A-133, near the former motor pool refueling point, and (3) the northern part of the site near MW-12. Excessive soil contamination appears to be restricted to 1 to 2 feet above the top of the water table (2 to 4 feet below land surface).

Compounds identified in monitoring well groundwater samples include benzene, ethylbenzene, toluene, xylenes, methyl tert-butyl ether (MTBE), total recoverable petroleum hydrocarbons (TRPH), lead, polynuclear aromatic hydrocarbons (PAH), and several chlorinated compounds. Groundwater contaminant concentrations were compared to Class G-III groundwater target levels in Chapter 17-770, FAC, where applicable.

Benzene, total volatile organic aromatics (VOA), and lead concentrations in groundwater exceed State target levels for Class G-III groundwater (total VOA is the sum of benzene, ethylbenzene, toluene, and xylenes). The areal extent of the benzene contamination, exceeding the Chapter 17-770, FAC target level, appears to be restricted to the vicinity of monitoring well MW-4, located at the former location of the ASTs (see Executive Summary Figure). Two total VOA contamination plumes were identified: one in the vicinity of the former ASTs, and a second in the vicinity of the former motor pool fuel refueling point, located east of

Building A-133. Lead concentrations in groundwater exceeded the State target level only in the vicinity of monitoring well MW-11, located east of the former ASTs. PAH (including naphthalenes) concentrations in groundwater exceed applied groundwater guidance concentrations in the vicinity of monitoring well MW-1, located downgradient of the former ASTs. Chlorinated compounds concentrations detected in groundwater were generally below groundwater guidance concentrations and do not appear to be a concern at the site.

Based on the findings, conclusions, and interpretations of the CA, ABB-ES recommends that a remedial action plan (RAP) be prepared to address excessively contamination soil and benzene, total VOA, and lead in groundwater. The PAH (and naphthalenes) contamination in the vicinity of monitoring well MW-1 should also be addressed. The manner of soil and groundwater remediation will be presented in the RAP, which will be developed pending Florida Department of Environmental Protection (FDEP) approval of this CAR.

ACKNOWLEDGMENTS

In preparing this report, the Underground Storage Tank Section of the Comprehensive Long-Term Environmental Action, (CLEAN) Group at ABB Environmental Services, Inc. (ABB-ES), commends the support, assistance, and cooperation provided by the personnel at Boca Chica Field, Naval Air Station, Key West, Florida, and Southern Division, Naval Facilities Engineering Command.

TABLE OF CONTENTS

Contamination Assessment Report Flying Club Site, Building A-127 Naval Air Station Key West Boca Chica Field, Key West, Florida

Sect	ion	Title	Page No
1.0	INTR	CODUCTION	. 1-1
2.0	SITE	BACKGROUND	. 2-1
3.0	SITE 3.1 3.2		. 3-1
4.0	METH 4.1 4.2 4.3 4.4 4.5 4.6	ODOLOGIES AND EQUIPMENT SOIL BORING ADVANCEMENT, SOIL SAMPLING, AND ORGANIC VAPOR ANALYZER (OVA) HEADSPACE ANALYSIS MONITORING WELL INSTALLATION AND CONSTRUCTION WATER TABLE ELEVATION MEASUREMENTS GROUNDWATER SAMPLING AND ANALYSES AQUIFER SLUG TESTS TIDAL INFLUENCE STUDY	. 4-1 . 4-1 . 4-5 . 4-5
5.0	CONT. 5.1 5.2	AMINATION ASSESSMENT RESULTS SITE-SPECIFIC AQUIFER CHARACTERISTICS AND HYDROGEOLOGIC PARAMETERS CONTAMINANT PLUME CHARACTERIZATION 5.2.1 Soil Contamination Assessment 5.2.2 Groundwater Contamination Assessment 5.2.2.1 Total Volatile Organic Aromatics (VOA) in Groundwater 5.2.2.2 Methyl-tert-butyl Ether (MTBE) in Groundwater 5.2.2.3 Total Polynuclear Aromatic Hydrocarbons (PAH) (including Naphthalenes) in Groundwater 5.2.2.4 Total Recoverable Petroleum Hydrocarbons (TRPH in Groundwater 5.2.2.5 Lead in Groundwater 5.2.2.6 Chlorinated Compounds in Groundwater	. 5-1 . 5-1 . 5-1 . 5-13 . 5-13 . 5-17 .) . 5-17 . 5-20
6.0	6.1 6.2	ARY, CONCLUSIONS, AND RECOMMENDATIONS	. 6-1 . 6-1
7.0		ESSIONAL REVIEW CERTIFICATION	7 1

LIST OF FIGURES

Contamination Assessment Report Flying Club Site, Building A-127 Naval Air Station Key West Boca Chica Field, Key West, Florida

Title

Page No.

2-2	Site Plan	2-3
4-1		
4-2		
4-3	Typical Monitoring Well Installation Detail	4-4
5-1		
5-2		
5-3		
		5-10
5-4	Total Volatile Organic Aromatics (VOA) in Groundwater Distribution	
	Map, October 19, 1993	5-14
5-5		
5-6		
		5-16
5-7	Total Polynuclear Aromatic Hydrocarbons (Including Naphthalenes) in	
		5-18
5-8		
		5-19
5-9	Lead in Groundwater Distribution Map, October 19, 1993	5-21
5-10		
		5-23
4-2 Monitoring Well Location Map		
	LIST OF TABLES	
	LIST OF TABLES	
Tabl		Page No.
<u>Tabl</u>		<u>Page No.</u>
	le Title	•
5-1	Title Water Table Elevation Data, October 18 and December 4, 1993	•
5-1	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13	5-2
5-1 5-2	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993	5-2
5-1 5-2	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993	5-2 5-5
5-1 5-2	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993	5-2 5-5
5-1 5-2	1 Soil Boring Location Map	
4-1 Soil Boring Location Map	5-2 5-5	
5-1 5-2 5-3	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993	5-2 5-5
5-1 5-2 5-3	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993	5-2 5-5
5-1 5-2 5-3 REFE	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993	5-2 5-5
5-1 5-2 5-3 REFE APPE	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993	5-2 5-5
5-1 5-2 5-3 REFE APPE Ap	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993	5-2 5-5
5-1 5-2 5-3 REFE APPE AP AP	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993	5-2 5-5
5-1 5-2 5-3 REFE APPE AP AP	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993	5-2 5-5
5-1 5-2 5-3 REFE APPE AP AP	Water Table Elevation Data, October 18 and December 4, 1993 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993	5-2 5-5

<u>Figure</u>

GLOSSARY

ABB-ES AST AVGAS	ABB Environmental Services, Inc. aboveground storage tank aviation gasoline
bls	below land surface
CA CAP CAR CFR CLEAN CNO CompQAP CTO	contamination assessment Contamination Assessment Plan Contamination Assessment Report Code of Federal Regulations Comprehensive Long-Term Environmental Action, Navy Chief of Naval Operations Comprehensive Quality Assurance Plan Contract Task Order
1,1-DCA 1,2-DCB 1,1-DCE 1,2-DCE	1,1-dichloroethane 1,2-dichlorobenzene 1,1-dichloroethene 1,2-dichloroethene
EDB	ethylene dibromide
FAC FDEP FDER FID ft/day ft/ft ft/min	Florida Administrative Code Florida Department of Environmental Protection Florida Department of Environmental Regulation flame ionization detector feet per day feet per foot feet per minute
HSWA	Hazardous and Solid Waste Amendments of 1984
ID	inside diameter
K	hydraulic conductivity
MLLW MTBE mg/l msl	mean lower low water methyl tert-butyl ether milligrams per liter mean sea level
NAS	Naval Air Station
AVO	organic vapor analyzer
PAH PCB POA ppb	polynuclear aromatic hydrocarbons polychlorinated biphenyl Plan of Action parts per billion

GLOSSARY (Continued)

ppm parts per million
PVC polyvinyl chloride

QA/QC quality assurance/quality control

RAP Remedial Action Plan

RCRA Resource Conservation and Recovery Act

SOUTHNAV-

FACENGCOM Southern Division, Naval Facilities Engineering Command

SWDA Solid Waste Disposal Act of 1965

TCE trichloroethene top of casing

TRPH total recoverable petroleum hydrocarbons

USEPA U.S. Environmental Protection Agency

UST underground storage tank

V average pore water velocity VOA volatile organic aromatics

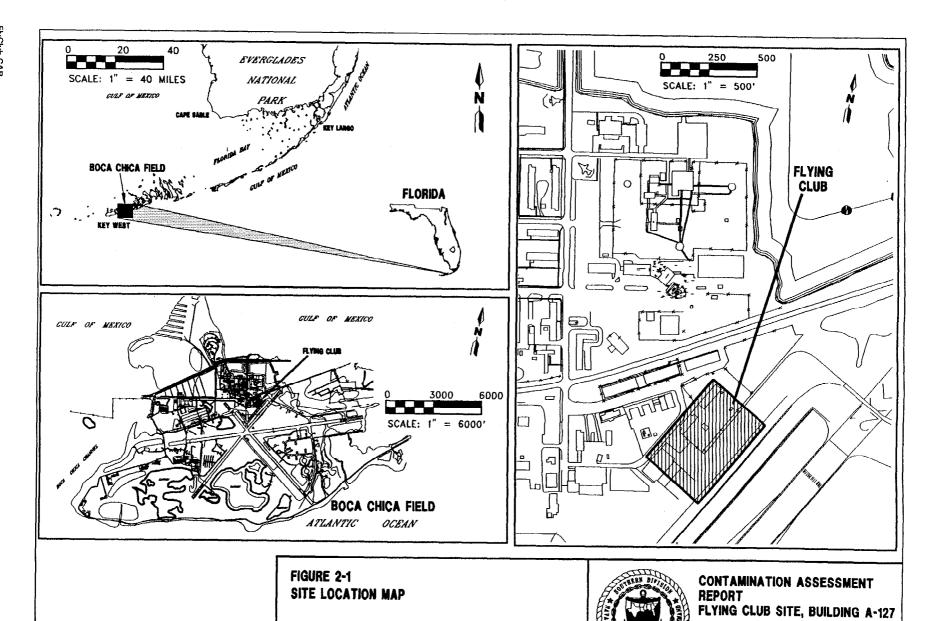
1.0 INTRODUCTION

ABB Environmental Services, Inc. (ABB-ES), was contracted by the Southern Division, Naval Facilities Engineering Command (SOUTHNAVFACENGCOM) to perform a contamination assessment (CA) and submit a Contamination Assessment Report (CAR) for the former location of the Flying Club at Boca Chica Field, Naval Air Station (NAS), Key West, Florida. The scope of services is described in Contract Task Order (CTO) No. 098, the Plan of Action (POA), and the Contamination Assessment Plan (CAP) and includes the following:

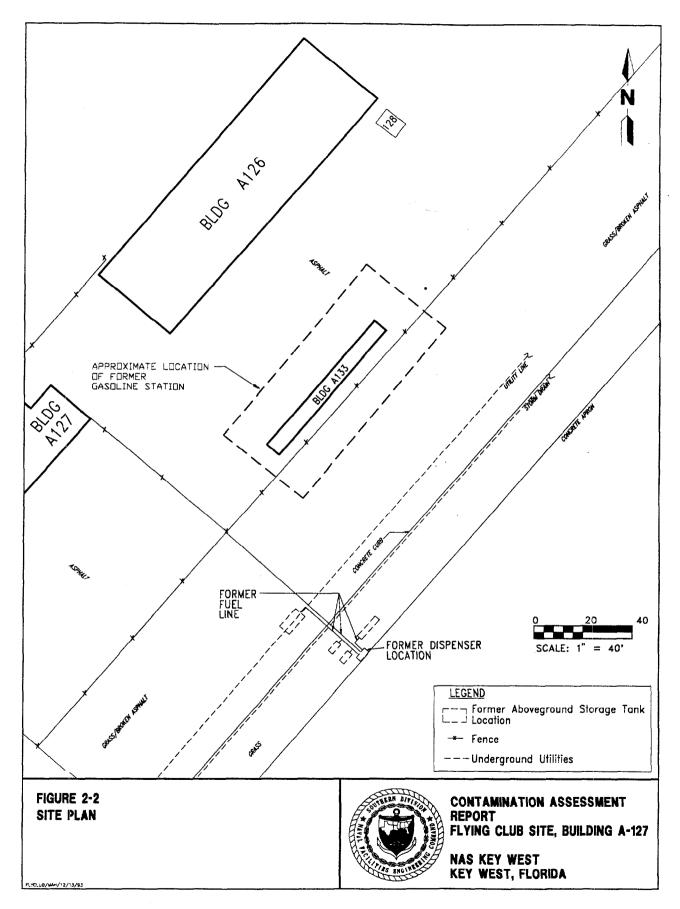
- collecting soil samples in the unsaturated zone for organic vapor analyzer (OVA) headspace analysis to assess the concentration of volatile organic compounds (VOCs) in soil,
- installing and sampling groundwater monitoring wells to assess the horizontal and vertical extent of groundwater contamination,
- collecting water level data to assess the groundwater flow direction and hydraulic gradient at the site,
- conducting a potable well inventory within a 0.25-mile radius of the site,
- conducting slug tests on selected wells to estimate aquifer characteristics,
- conducting a tidal influence study to assess the effect of tides on groundwater flow direction, and
- reducing and analyzing pertinent data gathered during the CA to complete this CAR.

The CA field investigation was conducted from October to December 1993. The following sections of this CAR present the background information, data compilation, field investigative results, and recommendations for further action at the site.

2.0 SITE BACKGROUND


NAS Key West is located approximately 150 miles southwest of Miami, Florida, in Monroe County, Florida (Figure 2-1). NAS Key West, a complex of activities located in numerous areas of the Lower Florida Keys, encompasses approximately 5,000 acres. The majority of these activities are concentrated on Boca Chica Key and Key West. The mission of NAS Key West is to maintain and operate facilities and provide services and materials to support operations of aviation activities and units designated by the Chief of Naval Operations (CNO).

The Flying Club is located along the northwest boundary of Taxiway "H" approximately 50 to 100 feet south of Building A-133 at Boca Chica Field (Figure 2-1). The Flying Club is currently inactive and was used as an aircraft parking and refueling area. The site is the former location of four aboveground storage tanks (ASTs) and associated dispensers and piping, which reportedly contained aviation gasoline (AVGAS) (Figure 2-2). Three ASTs reportedly had capacities of 560 gallons. The fourth AST reportedly had a capacity of 1,000 gallons. According to facility personnel, The Boca Chica Flying Club was in operation until the late 1960's. The ASTs, fuel dispensers, and associated piping were removed from the site in February 1992. Overfilling of the ASTs is the suspected cause of petroleum contamination at the site.


The area in the immediate vicinity of the ASTs is covered by broken asphalt, grass, and limestone. The site is bordered along the southeast by a concrete apron that is part of Taxiway "H", which is used for airplane and helicopter parking. During the site investigation, routine engine testing and refueling operations were observed to occur. A northeast-southwest trending, 6-inch high concrete curb is located approximately 20 feet northwest of Taxiway "H". An underground storm drain parallels the concrete curb over much of the site area. An underground utility line also runs parallel to the concrete curb on the northwest side of the curb. The northwest boundary of the site is bordered by an 8-foot high, chain-link fence.

There are three structures located on the northern side of the fence, Buildings A-126, A-127, and A-133. Building A-126, located approximately 150 feet northerly of the former ASTs, was formerly used as a transportation facility and is currently used as an electrical maintenance and repair facility. A-127, located approximately 120 feet northwest of the former ASTs, is currently inactive and was formerly used as a transportation facility. Building A-133, located approximately 70 feet north of the former ASTs, is a remnant of a former motor pool refueling point and is currently used to store transformers, some of which contain polychlorinated biphenyls (PCBs). Discussions with activity personnel indicated that underground storage tank(s) (USTs) associated with the motor pool refueling operations had been removed. Labels on the transformers indicated that they contained less than 50 parts per million (ppm) of PCBs. Interviews with NAS Key West personnel indicate that the area in the vicinity of Building A-133 may also have been used as an auto hobby shop and staging area.

FlyClub.CAR FGB.04.94

NAS KEY WEST KEY WEST, FLORIDA

3.0 SITE CONDITIONS

3.1 PHYSIOGRAPHY. Regional physiography is discussed in Appendix A, Site Conditions. The surface topography at the site is flat, with ground elevations of approximately 5 feet above mean sea level (msl) (U.S. Geological Survey, 1971).

3.2 HYDROGEOLOGY.

- 3.2.1 Regional Regional hydrogeology is discussed in Appendix A.
- 3.2.2 Site Specific Site-specific hydrogeologic characteristics were obtained from information gathered during the site investigation. The unconfined surficial aquifer is the principal aquifer of concern in the Key West area. Rainwater infiltration appears to be the only source of freshwater recharge to the aquifer. Specific conductance of the groundwater can vary greatly depending on whether it is the "wet" season or a drought. Water quality data indicate that the surficial aquifer in the Key West area is an unlikely source of potable water (McKenzie, 1990) thus, the surficial aquifer will be treated herein as a G-III groundwater source. Potable water at NAS Key West is obtained from mainland Florida through the Florida Keys Aqueduct.

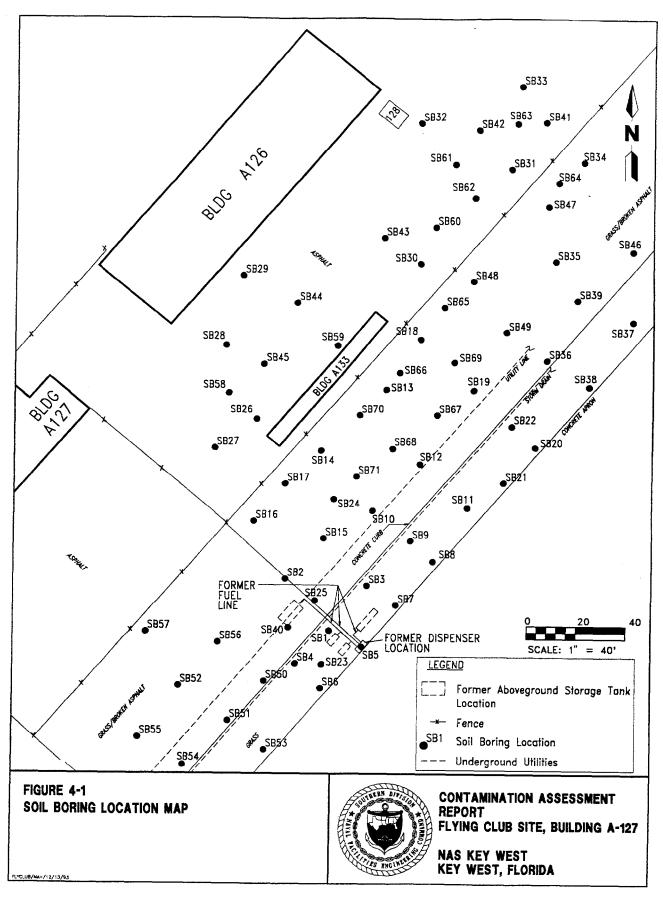
The surficial aquifer was penetrated to a depth of 32 feet below land surface (bls) during this investigation. This zone is generally composed of a mixture of colitic sand; light gray, non-plastic clay; and limestone gravel. Some pebble-sized limestone fragments were encountered. The sand is light brown to white, and varies from fine grained to coarse grained. Clay content in the soil ranges from 0 to 30 percent, and typically averages 20 percent. The amount of gravel in the samples is typically 10 percent to 20 percent, and generally increases with depth. Because the soil borings are very shallow (less than 6 feet bls) and the lithology across the site varies very little, only the lithologic logs for borings in which monitoring wells were installed are presented in Appendix B, Lithologic Logs.

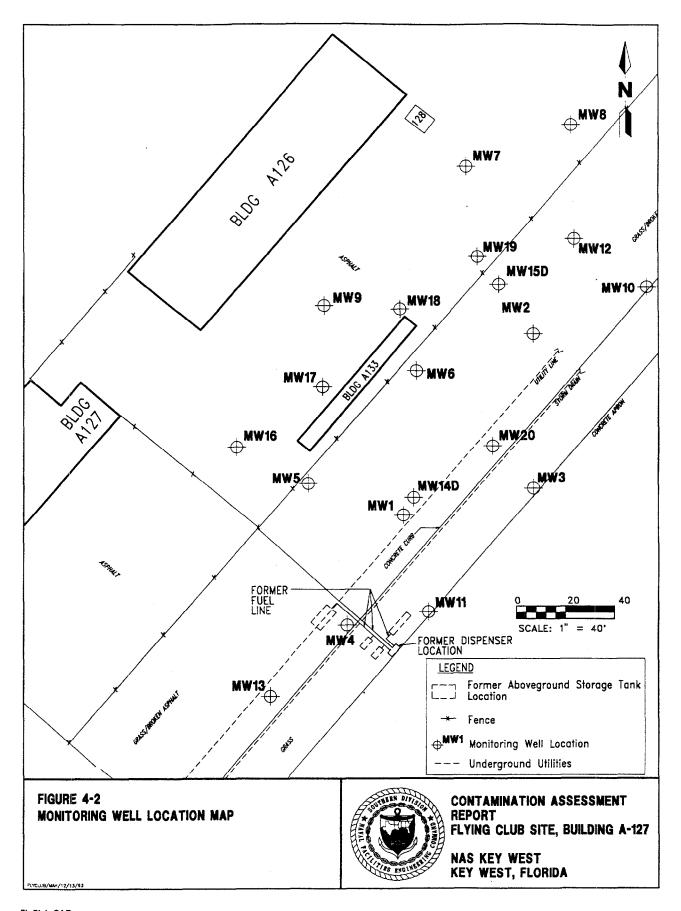
During this investigation, groundwater was encountered at depths ranging from approximately 2.5 to 4 feet bls. Groundwater flow direction in the surficial aquifer is to the northeast. A tidal influence study indicates groundwater elevations and gradients are tidally affected (see Appendix C, Tidal Influence Study); however, the direction of groundwater flow appears to be consistently to the northeast at all times during the tidal cycle.

4.0 METHODOLOGIES AND EQUIPMENT

The site investigation was conducted from October to December 1993. All methodologies and equipment used during the field investigation were in conformance with the ABB-ES, Florida Department of Environmental Protection (FDEP)-approved, Comprehensive Quality Assurance Program Plan (CompQAPP).

4.1 SOIL BORING ADVANCEMENT, SOIL SAMPLING, AND ORGANIC VAPOR ANALYZER (OVA) HEADSPACE ANALYSIS. Seventy-one soil borings (designated SB-1 through SB-71) were advanced into the water table to assess the horizontal and vertical extent of petroleum contamination in the vadose zone, to characterize the type of subsurface material, and to aid in the placement of groundwater monitoring wells. Soil boring locations are shown on Figure 4-1.


Soil borings were advanced using a truck-mounted drill rig with rotary drilling and solid-stemmed augers. Soil samples were collected at 2-foot vertical intervals until the water table was encountered. Total depth of soil borings varied from 4 feet bls to 6 feet bls, depending on the depth to the water table.


Soil samples were placed in 16-ounce glass jars and were sealed with a double layer of aluminum foil. Soil petroleum contamination was assessed by OVA headspace analysis following procedures outlined by Florida Department of Environmental Regulation (FDER) (1992). Samples were analyzed with an OVA equipped with a flame ionization detector (FID).

For each boring, OVA headspace readings of soil samples collected from 0 to 2 feet bls or from 2 to 4 feet bls, were used for soil assessment. Because samples collected from 4 to 6 feet bls were below the water table, OVA headspace readings for these samples were not used for soil assessment. The results of the soil boring and soil sampling program are discussed in Section 5.2.1.

4.2 MONITORING WELL INSTALLATION AND CONSTRUCTION. Borings for monitoring wells were advanced with a truck-mounted drill rig using rotary drilling techniques with 4.25-inch inside diameter (ID), hollow-stemmed augers. Eighteen shallow monitoring wells (designated KYW-A127-MW-1 through KYW-A127-MW13, and KYW-A127-MW-16 through KYW-A127-MW-20) were installed to depths of 12 to 13 feet bls. Two vertical extent wells (designated KYW-A127-MW-14D and KYW-A127-MW-15D) were installed at depths of 25 to 30 feet bls and 20 to 25 feet bls, respectively. Monitoring well locations are shown in Figure 4-2. For convenience, the prefix "KYW-A127" is not used in tables, figures, and text throughout this report.

Shallow wells were constructed of 2-inch ID, schedule 40, polyvinyl chloride (PVC) casing with flush-threaded joints and 10 feet of 0.010-inch machine-slotted screen. PVC well casing extends from the top of the screen to land surface. A 20/30 grade silica sand filter pack was placed in the annular space to approximately 1 foot above the top of the screened interval. A 6- to 12-inch thick bentonite seal was placed on top of the filter pack. The remaining annular space was grouted to surface with a neat cement grout. A protective traffic-bearing vault was installed to complete the well. Monitoring wells are equipped with a locking well cap and a padlock. Shallow monitoring well installation details are presented in Figure 4-3.

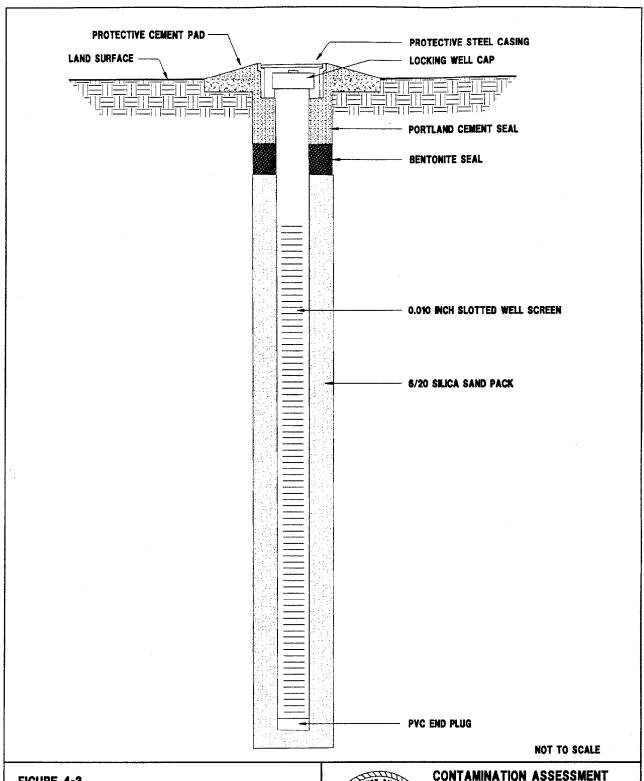


FIGURE 4-3
TYPICAL MONITORING WELL
INSTALLATION DETAIL

CONTAMINATION ASSESSMENT REPORT FLYING CLUB SITE, BUILDING A-127

NAS KEY WEST KEY WEST, FLORIDA

.....

Construction details for the vertical extent wells are identical to those of the shallow monitoring wells, except that 5 feet of well screen were used, and the 20/30 grade sand filter pack extended to 2 feet above the screened interval.

- 4.3 WATER TABLE ELEVATION MEASUREMENTS. Water table elevations were recorded from each monitoring well on October 18, 1993, and December 4, 1993. Depth to groundwater was measured to the nearest 0.01-foot using an electronic water level indicator. Water table elevations were calculated by subtracting the measured depth to groundwater from the top of casing elevation for each respective well. Top of casing elevations were referenced to a datum point arbitrarily set at an elevation of 10.00 feet above msl at MW-11. Water table elevation contour maps for each date were prepared using this information and are discussed in Section 5.3 of this report.
- 4.4 GROUNDWATER SAMPLING AND ANALYSES. Groundwater samples were collected from each monitoring well on October 19, 1993. Before sample collection, monitoring wells were purged with a TeflonTM bailer until five well volumes had been removed from the well. Groundwater samples were then collected using the bailer. Groundwater samples were placed into appropriate containers, properly preserved, and placed on ice. Groundwater samples were sent to Wadsworth/ALERT Laboratories, Tampa, Florida, under chain-of-custody procedures. Appropriate quality assurance/quality control (QA/QC) samples were collected and analyzed.

Because of the long history of AVGAS and gasoline storage at the site and the likelihood that gasoline constituents have weathered (degraded) to kerosene-type constituents, and also because of the presence of jet fuel refueling operations on the runway east of the site, samples were analyzed for constituents of the kerosene analytical group as defined in Chapter 17-770, Florida Administrative Code (FAC). Analyses were performed for volatile organic halocarbons by U.S. Environmental Protection Agency (USEPA) Method 601, for volatile organic aromatics (VOA) and methyl tert-butyl ether (MTBE) by USEPA Method 602, for polynuclear aromatic hydrocarbons (PAH) by USEPA Method 610, for total recoverable petroleum hydrocarbons (TRPH) by USEPA Method 418.1, for ethylene dibromide (EDB) by USEPA Method 504, and for lead by USEPA Method 239.2.

4.5 AQUIFER SLUG TESTS. Rising head slug tests were conducted October 20, 1993, in monitoring wells MW-4 and MW-6 to estimate the hydraulic conductivity (K) of the surficial aquifer.

The slug test developed by Bouwer and Rice (1976) measures the saturated K value using a single well. The test method used is termed a "rising head" test and is performed by quickly withdrawing a volume of water (slug) from the well and measuring the subsequent rate of the rising water level in the well. Bouwer (1989) recommends the rising head slug test for wells with screened intervals that are only partially submerged or partially penetrate unconfined aquifers.

The slug was constructed of 1-inch, outside diameter, PVC pipe, 5 feet in length, filled with sand, and capped watertight at both ends. The water level changes in the monitoring wells were recorded using a data logger and pressure transducer. The pressure transducer was suspended near the bottom of the well,

and an initial water level was recorded prior to beginning the test. The slug was then lowered into the well to a depth below the water table. Water levels were then recorded until they stabilized at the original level. The slug was quickly removed from the well, and the rate of the rising water level in the well was recorded until the water table had recovered to the initial value at the time of slug removal. Three tests were conducted in each well to obtain an average K value. Slug test graphs and calculations are attached in Appendix D, Aquifer Parameter Calculations.

4.6 TIDAL INFLUENCE STUDY. A 38-hour tidal study was conducted from 1800 hours on November 30, 1993, to 0730 hours on December 2, 1993. The purpose of the tidal study was to assess the effect tidal fluctuations had on water table elevations and the groundwater flow direction at the site. The study was conducted during a full moon in order to observe and measure larger than average tidal fluctuations over at least one tidal cycle. Tidal study methodologies and results are discussed in Appendix C, Tidal Influence Study.

5.0 CONTAMINATION ASSESSMENT RESULTS

5.1 SITE-SPECIFIC AQUIFER CHARACTERISTICS AND HYDROGEOLOGIC PARAMETERS. Depth to water, top of casing, and water table elevations recorded October 20, 1993, and December 4, 1993, are presented in Table 5-1. Water table elevation contour maps for each date are shown in Figures 5-1 and 5-2, respectively. (Note: water table elevations from the two vertical extent wells, MW-14D and MW-15D, were not used in water table elevation contouring.) The data from the shallow wells indicate a northeasterly groundwater flow direction at the site on both dates. The tidal influence study indicates that water table elevations and hydraulic gradients are tidally influenced; however, tides do not appear to change the northeastern groundwater flow direction (See Appendix C, Tidal Influence Study).

The calculated average hydraulic gradient at the site is 1.52×10^{-3} feet per foot (ft/ft). Slug test results indicate an average K value of 9.5×10^{-1} feet per day (ft/day). The calculated pore water velocity (V) is 4.8×10^{-3} ft/day. Equations and calculations used to estimate these values are presented in Appendix D, Aquifer Parameter Calculations.

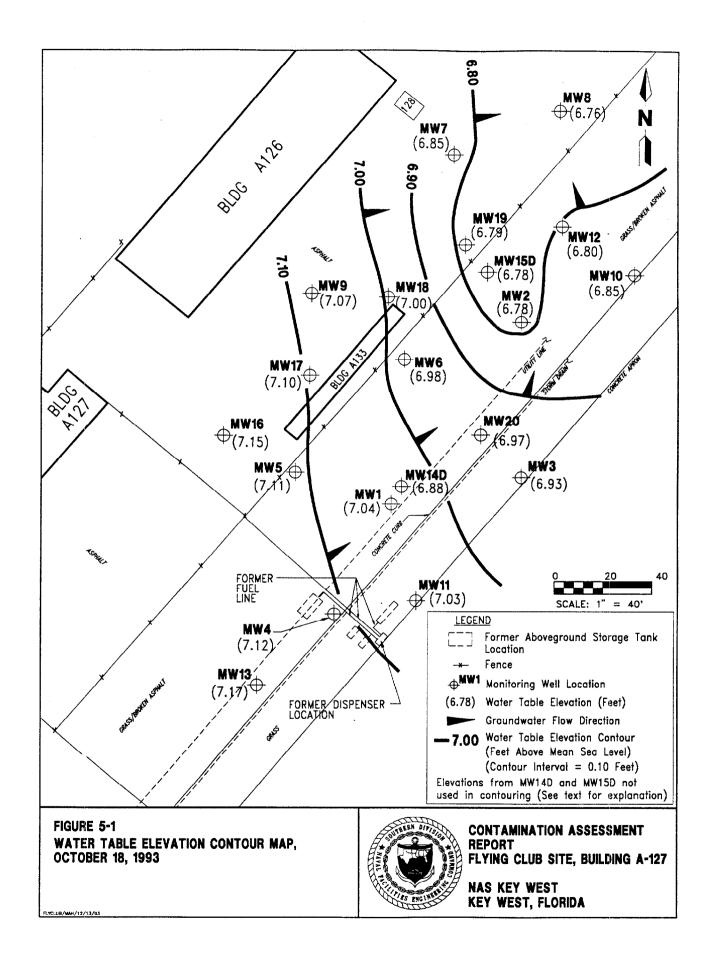
5.2 CONTAMINANT PLUME CHARACTERIZATION.

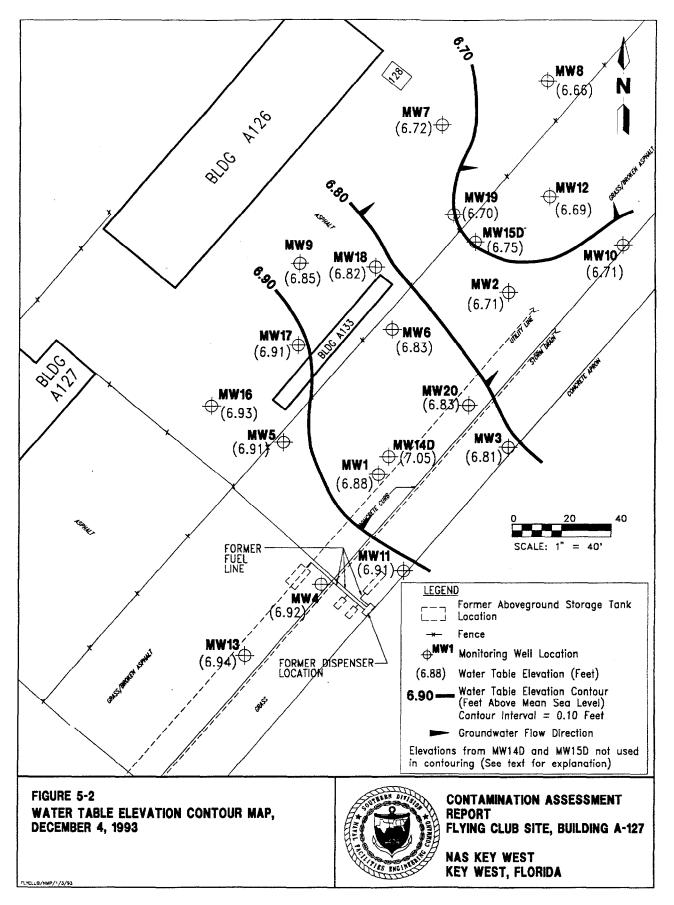
5.2.1 Soil Contamination Assessment A summary of the soil sample OVA analyses is presented in Table 5-2. Groundwater laboratory analytical results indicate that both gasoline and kerosene-type constituents are present in groundwater at the site (see subsection 5.2.2). Therefore, the soil assessment follows Chapter 17-770, FAC, guidelines for the "Mixed Products Analytical Group". For the "Mixed Products Analytical Group" soil with OVA headspace readings greater than 10 ppm is considered to be petroleum contaminated, and soil with OVA headspace readings greater than 50 ppm is defined as "excessively contaminated" (FDER, May 1992). "Excessively contaminated" soil must be remediated (FDER, May 1992).

Four areas of excessively contaminated soil were identified by OVA headspace analysis (Figure 5-3). For each boring, OVA headspace readings presented in Figure 5-3 are the highest recorded for samples collected above the water table, either from 0 to 2 feet bls or from 2 to 4 feet bls. With few exceptions, the highest reading was recorded in the sample collected just above the water table, from 2 to 4 feet bls. Excessively petroleum-contaminated soil appears to be restricted to within 1 to 2 feet above the top of the water table.

The areal extent of excessively contaminated soil is shown within the 50 ppm isoconcentration lines. The most contaminated area is located southeast of Building A-133. This area is approximately 70 feet long and 40 feet wide. Three smaller isolated areas were identified: (1) in the vicinity of the former AVGAS ASTs surrounding soil boring SB-1, (2) on the northwest side of Building A-133 at soil boring SB-45, and (3) in the northern part of the site at soil boring SB-31.

5.2.2 Groundwater Contamination Assessment Groundwater analytical laboratory results for the samples collected October 19, 1993, are presented in Appendix E, Groundwater Analytical Data, and are summarized in Table 5-3. VOA, MTBE, PAH (including naphthalenes), TRPH, lead, and several chlorinated compounds were detected in groundwater samples. Free product was not detected in any monitoring


Table 5-1 Water Table Elevation Data, October 18 and December 4, 1993


Contamination Assessment Report Flying Club Site, Bullding A-127 Naval Air Station Key West Boca Chica Field, Key West, Florida

		•••	October	18, 1993	Decemb	er 4, 1993
Monitoring Well Number	Total Well Depth	Top of Casing Elevation ¹	Depth to Groundwater (from TOC)	Relative Groundwater Elevation	Depth to Groundwater (from TOC)	Relative Groundwater Elevation ¹
MW-1	12	10.45	3.41	7.04	3.57	6.88
MW-2	12	10.56	3.78	6.78	3.85	6.71
MW-3	12	9.55	2.62	6.93	2.74	6.81
MW-4	12	10.70	3.58	7.12	3.78	6.92
MW-5	12	10.86	3.75	7.11	3.95	6.91
MW-6	12	10.69	3.71	6.98	3.86	6.83
MW-7	12	10.78	3.93	6.85	4.06	6.72
MW-8	12	10.64	3.88	6.76	3.98	6.66
MW-9	12	10.92	3.85	7.07	4.07	6.85
MW-10	12	10.55	3.70	6.85	3.84	6.71
MW-11	12	10.00	2.97	7.03	3.09	6.91
MW-12	12	10.56	3.76	6.80	3.87	6.69
MW-13	12	10.44	3.27	7.17	3.50	6.94
MW-14D	30	10.72	3.84	6.88	3.67	7.05
MW-15D	25	10.67	3.89	6.78	3.92	6.75
MW-16	12	10.84	3.69	7.15	3.91	6.93
MW-17	12	11.00	3.90	7.10	4.09	6.91
MW-18	12	10.91	3.91	7.00	4.09	6.82
MW-19	12	10.44	3.65	6.79	3.74	6.70
MW-20	12	10.35	3.38	6.97	3.52	6.83

¹All elevations referenced to an arbitrary benchmark of 10.00 feet established at MW-11.

Note: TOC = top of casing.

Table 5-2 Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993

Contamination Assessment Report Flying Club Site, Building A-127 Naval Air Station Key West Boca Chica Field, Key West, Florida

Boring esignation	Depth (feet bis)	Concentration (ppm)	Comments	Boring Designation	Depth (feet bis)	Concentration (ppm)	Comments
SB1	0 to 2	1	No odor	SB8	0 to 2	8	
	2 to 4	60	Wet		2 to 4	1	No odor; wet
	4 to 6	2,500	Slight odor		4 to 6	1	·
SB2	0 to 2	<1	No odor	SB9	0 to 2	<1	No odor
	2 to 4	<1		1	2 to 4	<1	Wet
	4 to 6	<1	Wet		4 to 6	1,100	Petroleum odor
SB3	0 to 2	<1	No odor	SB10	0 to 2	<1	Slight odor
	2 to 4	<1		l	2 to 4	<1	Wet
	4 to 6	245	Wet		4 to 6	250	Strong odor
SB4	0 to 2	<1	No odor	SB11	0 to 2	5	No odor
	2 to 4	<1	a		2 to 4	38	Slight odor
	4 to 6	14	Wet		4 to 6	900	Strong odor
SB5	0 to 2	<1	No odor	SB12	0 to 2	<1	Petroleum odor
	2 to 4	<1			2 to 4	16	Wet
	4 to 6	<1	Wet		4 to 6	1,500	Strong odor
SB6	0 to 2	<1	No odor	SB13	0 to 2	1,400	Petroleum odor
	2 to 4	<1	Wet	ļ	2 to 4	1,400	
	4 to 6	<1			4 to 6	1,450	Wet
SB7	0 to 2	<1	No odor	SB14	0 to 2	<1	Strong odor
	2 to 4	<1	Wet		2 to 4	6	Damp
	4 to 6	<1			4 to 6	1,450	Wet; strong odor

ď

Table 5-2 (Continued) Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993

Contamination Assessment Report Flying Club Site, Building A-127 Naval Air Station Key West Boca Chica Field, Key West, Florida

Boring Designation	Depth (feet bls)	Concentration (ppm) Comments 2 No odor 1		Boring Designation	Depth (feet bis)	Concentration (ppm)	Comments	
SB15	0 to 2	2	No odor	SB22	0 to 2	1	Organics	
	2 to 4	1			2 to 4	10	No odor; damp	
	4 to 6	<1	Wet		4 to 6	1,700	Fuel odor; wet	
SB16	0 to 2	<1	No odor	SB23	0 to 2	<1	No odor	
	2 to 4	<1			2 to 4	<1	Wet	
	4 to 6	<1	Wet		4 to 6	<1		
SB17	0 to 2	<1	No odor	SB24	0 to 2	1	No odor	
	2 to 4	<1			2 to 4	1		
	4 to 6	<1	Wet		4 to 6	5	Wet	
SB18	0 to 2	<1		SB25	0 to 2	1	No odor	
	2 to 4	5	Petroleum odor		2 to 4	1		
	4 to 6	345	Wet		4 to 6	525	Wet	
SB19	0 to 2	<1	Slight odor	SB26	0 to 2	2		
	2 to 4	12	Damp		2 to 4	10	Petroleum odor	
	4 to 6	200	Petroleum odor		4 to 6	1,900	Wet; strong odor	
SB20	0 to 2	12	Strong odor	SB27	0 to 2	<1	Slight unknown odor	
	2 to 4	<5	Damp		2 to 4	<1	Wet; no odor	
	4 to 6	<5	Wet		4 to 6	<1		
SB21	0 to 2	<1		SB28	0 to 2	<1	No odor	
	2 to 4	<1	Wet; no odor		2 to 4	<1	Damp	
	4 to 6	<1			4 to 6	6	Petroleum odor; wet	

See notes at end of table.

Table 5-2 (Continued) Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993

Contamination Assessment Report Flying Club Site, Building A-127 Naval Air Station Key West Boca Chica Field, Key West, Florida

Boring esignation	Depth (feet bis)	Concentration (ppm)	Comments	Boring Designation	Depth (feet bis)	Concentration (ppm)	Comments
SB29	0 to 2	3	No odor	SB36	0 to 2	12	No odor
	2 to 4	<1	Wet; no odor		2 to 4	7	Petroleum odor
	4 to 6	<1			4 to 6	125	Wet
SB30	0 to 2	<1	No odor	SB37	0 to 2	<1	Damp; no odor
	2 to 4	<1	Damp		2 to 4	<1	
	4 to 6	90	Petroleum odor; wet		4 to 6	<1	
SB31	0 to 2	<1	No odor	SB38	0 to 2	<1	Petroleum odor
	2 to 4	800	Pinewood odor		2 to 4	<1	
	4 to 6	150	Petroleum odor		4 to 6	<1	No odor; wet
SB32	0 to 2	<1	No odor	SB39	0 to 2	2	Slight odor
	2 to 4	<1	Damp		2 to 4	1	Petroleum odor
	4 to 6	<1	Wet		4 to 6	160	Wet
SB33	0 to 2	<1	No odor	SB40	0 to 2	<1	No odor
	2 to 4	<1			2 to 4	<1	
	4 to 6	<1	Slight petroleum odor		4 to 6	<1	Wet
SB34	0 to 2	<1	No odor	SB41	0 to 2	<1	Slight odor
	2 to 4	<1			2 to 4	<1	
	4 to 6	<1	Wet; organic odor		4 to 6	2	Strong odor; wet
SB35	0 to 2	<1	No odor	SB42	0 to 2	<1	No odor
	2 to 4	<1			2 to 4	<1	Damp
	4 to 6	<1	Wet		4 to 6	<1	Wet

See notes at end of table.

ပှ ထ

Table 5-2 (Continued) Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993

Contamination Assessment Report Flying Club Site, Building A-127 Naval Air Station Key West Boca Chica Field, Key West, Florida

Boring Designation	Depth Concentration (feet bis) (ppm)		Comments		Depth (feet bis)	Concentration (ppm)	Comments
SB43	0 to 2	<1	Slight odor	SB50	0 to 2	<1	No odor
	2 to 4	<1	Damp		2 to 4	<1	Wet
	4 to 6	<1	Wet		4 to 6	90	Slight odor
SB44	0 to 2	<1	No odor	SB51	0 to 2	2	Slight odor
	2 to 4	<1	Damp		2 to 4	<1	No odor; damp
	4 to 6	<1	Wet		4 to 6	65	
SB45	0 to 2	<1	Slight odor	SB52	0 to 2	<1	
	2 to 4	210	Damp		2 to 4	<1	
	4 to 6	800	Strong odor; wet		4 to 6	21	
SB46	0 to 2	<1	No odor	SB53	0 to 2	<1	
	2 to 4	<1			2 to 4	<1	·
	4 to 6	<1	Wet		4 to 6	<1	
SB47	0 to 2	<1	No odor	SB54	0 to 2	<1	
	2 to 4	<1	Damp		2 to 4	<1	
	4 to 6	2	Wet		4 to 6	1	
SB48	0 to 2	1	No odor	SB55	0 to 2	<1	No odor
	2 to 4	1			2 to 4	<1	
	4 to 6	2,200	Petroleum odor; wet		4 to 6	<1	
SB49	0 to 2	<1	No odor	SB56	0 to 2	<1	
	2 to 4	<1			2 to 4	<1	
	4 to 6	950	Petroleum odor; wet		4 to 6	<1	

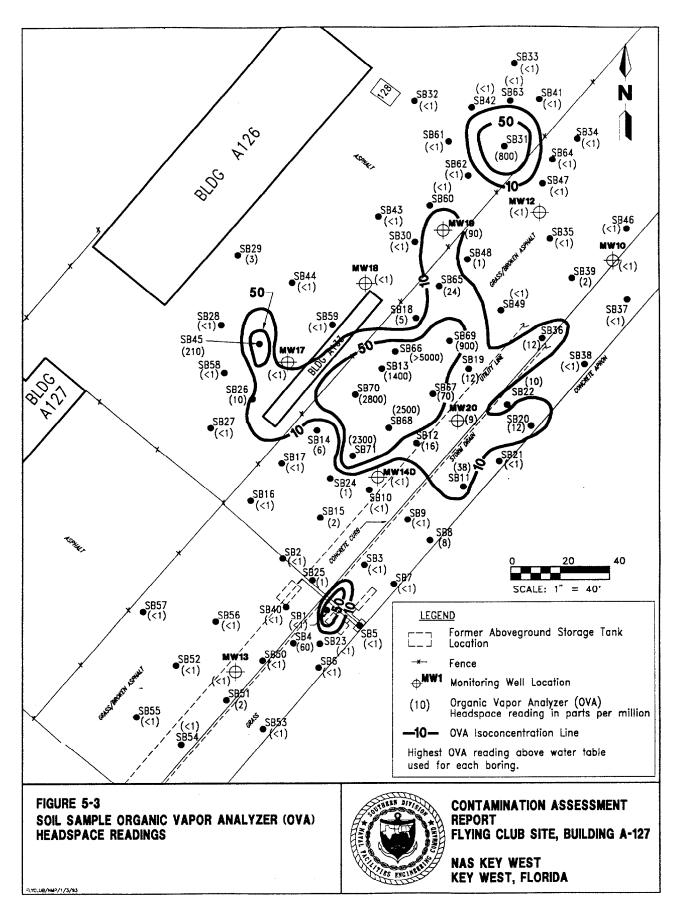

5-9

Table 5-2 (Continued) Soil Sample Organic Vapor Analyzer (OVA) Analyses, October 13 through October 16, 1993

Contamination Assessment Report Flying Club Site, Building A-127 Naval Air Station Key West Boca Chica Field, Key West, Florida

Boring Designation	Depth (feet bis)	Concentration (ppm)	Comments	Boring Designation	Depth (feet bis)	Concentration (ppm)	Comments
SB57	0 to 2	<1		SB65	0 to 2	24	Petroleum odor
	2 to 4	<1	Wet		2 to 4	13	
	4 to 6	<1					
SB58	0 to 2	<1	No odor	SB66	0 to 2	25	Unknown odor
	2 to 4	<1			2 to 4	>5,000	Strong odor
SB59	0 to 2	<1	Slight odor	SB67	0 to 2	<1	No odor
	2 to 4	<1			2 to 4	70	
SB60	0 to 2	<1	No odor	SB68	0 to 2	7	No odor
	2 to 4	<1	Damp		2 to 4	2,500	Petroleum odor
SB61	0 to 2	<1	No odor	SB69	0 to 2	<1	No odor
	2 to 4	<1	Damp		2 to 4	900	Damp; strong odor
SB62	0 to 2	<1	No odor	SB70	0 to 2	38	Slight odor
	2 to 4	<1	Damp		2 to 4	2,800	Damp; strong odor
SB63	0 to 2	<1	No odor	SB71	0 to 2	<1	No odor
	2 to 4	<1			2 to 4	2,300	Damp; strong odor
SB64	0 to 2	<1	No odor				
	2 to 4	<1	Damp				

Notes: bis = below land surface. ppm = parts per million.

Table 5-3 Summary of Groundwater Analytical Results, October 19, 1993, Sampling Event

Contamination Assessment Report Flying Club Site, Building A-127 Naval Air Station Key West Boca Chica Field, Key West, Florida

Compound	Applied Guideline	MW 1	MW 2	MW 3	MW 4	MW 5	MW 6	DUP 1	MW 7	MW 8	MW 9	MW 10
Benzene	1200	13	150	1	710	<1	68	_61	<1	<1	<1	2
Ethylbenzene		130	7	<1	< 10	<1	140	120	<1	<1	<1	3
Toluene		12	10	<1	130	<1	15	14	<1	<1	<1	3
Xylenes		24	20	1	460	<1	82	74	<1	<1	<1	3
Total VOA	1200	179	187	2	1,300	ND	305	269	ND	ND	ND	11
MTBE	² 50	25	<5	<1	11	<1	6	8	<1	<1	<1	1
Benzo(a)pyrene	³10	5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5
Benzo(g,h,i)perylene	³10	12	<5	<5	<5	6	<5	<5	<5	<5	<5	<5
Dibenzo(a,h)anthracene	³ 10	9	` < 5	<5	<5	5	<5	<5	<5	<5	<5	<5
Indeno(1,2,3-cd)pyrene	³10	9	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Total PAH	³10	35	ND	ND	ND	11	ND	ND	ND	ND	ND	ND
1-Methylnaphthalene		18	<5	<5	<5	<5	<5	<5	<5	<5	¹<5	<5
2-Methylnaphthalene		48	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene		120	<5	<5	<5	<5	<5	<5	7	<5	<5	<5
Total naphthalenes	² 100	186	ND	ND	ND	ND	ND	ND	7	ND	ND	ND
TRPH	¹ 5	3	2	<1	1	<1	2	2	<1	<1	<1	2
Lead	¹50	9	<5	·<5	46	5	<5	7	<5	<5	5	<5
Chlorobenzene	³ 10	<5	<5	< 1	<10	<1	<5	<5	<1	3	<1	<1
1,2-Dichlorobenzene	³10	<5	<5	<1	< 10	<1	<5	<5	<1	<1	. <1	1
1,1-Dichloroethane	³2,400	<5	<5	<1	<10	<1	<5	<5	<1	<1	<1	<1
1,1-Dichloroethene	³ 7	<5	<5	<1	<10	<1	<5	<5	<1	<1	<1	<1
1,2-Dichloroethene	³4.2	<5	<5	<1	<10	<1	<5	<5	<1	1 (<1)	<1	<1
Methylene chloride	³5	16	11	3	< 10	<1	<5	23	<1	<1	<1	<1
Trichloroethene	³ 3	<5	<5	<1	< 10	<1	<5	<5	<1	<1	<1	<1
See notes at end of table	4											

FlyClub.CAR FGB.04.94

Table 5-3 (Continued) Summary of Groundwater Analytical Results, October 19, 1993, Sampling Event

Contamination Assessment Report Flying Club Site, Building A-127 Naval Air Station Key West Boca Chica Field, Key West, Florida

Compound	Applied Guideline	DUP 2	MW 11	MW 12	MW 13	MW 14D	MW 15D	MW 16	MW 17	MW 18	MW 19	MW 20
Benzene	¹ 200	1	<1	<1	<1	2	<1	<1	16	<1	<1	8
Ethylbenzene		2	<1	<1	<1	1	<1	<1	6	2	<1	96
Toluene		3	<1	<1	<1	<1	<1	<1	6	2	<1	12
Xylenes		2	<1	<1	<1	3	<1	<1	15	5	<1	40
Total VOA	¹ 200	8	ND	ND	ND	6	ND	ND	43	9	ND	156
MTBE	²50	1	<1	<1	<1	7	<1	<1	3	<1	<1	12
Benzo(a)pyrene	³10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Benzo(g,h,i)perylene	³10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Dibenzo(a,h)anthracene	³10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Indeno(1,2,3-cd)pyrene	³ 10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Total PAH	³ 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methylnaphthalene		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-Methylnaphthalene		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Total naphthalenes	²1 00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRPH	, ¹5	<1	<1	<1	<1	<1	<1	<1	1	<1	1	2
Lead	¹ 50	<5	65	<5	8	<5	<5	<5	7	<5	<5	14
Chlorobenzene	³ 10	<1	<1	<1	<1	<1	2	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	³10	1	<1	<1	<1	4	< 1	. <1	<1	<1	<1	1
1,1-Dichloroethane	³ 2,400	<1	<1	<1	<1	<1	11	<1	<1	<1	<1	<1
1,1-Dichloroethene	³ 7	<1	<1	<1	<1	<1	10	<1	<1	<1	<1	<1
1,2-Dichloroethene	³ 4.2	<1	<1	<1	<1	14(<1)	38(2)	<1	<1	2(3)	5(12)	<1
Methylene chloride	³ 5	2	<1	<1	45	6	7	1	21	<1	<1	1
Trichloroethene	³3	<1	<1	<1	<1	< 1	1	<1	<1	<1	<1	<1

¹Class G-III groundwater guidelines, Chapter 17-770, Florida Administrative Code.

Notes: All concentrations reported in parts per billion (ppb), except TRPH, which is reported in parts per million (ppm).

For 1,2-dichloroethene, concentrations for cis configurations is indicated first and concentration of trans configurations is indicated in parentheses. Total 1,2-dichloroethane (the sum of cis and trans configurations) concentrations are presented in Appendix E, Groundwater Analytical Data.

Methylene chloride was detected in the equipment blank, trip blank, and laboratory blank at concentrations of 14 ppb, 2 ppb, and 2 ppb, respectively.

DUP = duplicate sample. DUP1 was collected from monitoring well MW-6. DUP2 was collected from monitoring well MW-10.

Total VOA = total volatile aromatic hydrocarbons (the sum of benzene, ethylbenzene, toluene, and xylenes). MTBE = methyl-tert-butyl ether.

ND = not detected at method detection limits.

Total PAH = total polynuclear aromatic hydrocarbons (the sum of PAH's, excluding naphthalenes).

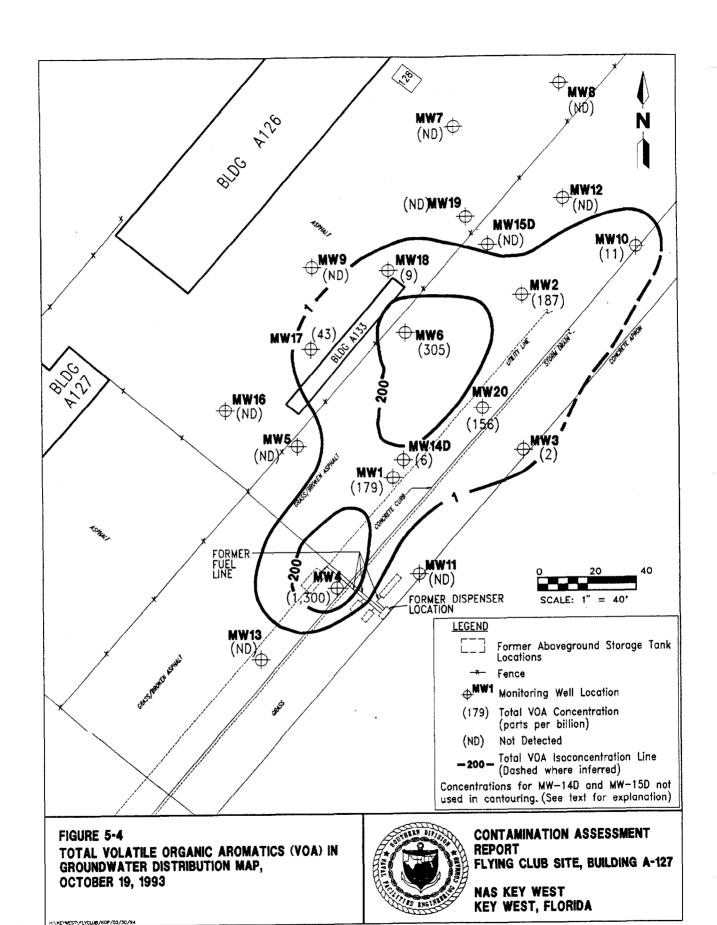
Total naphthalenes is the sum of 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene.

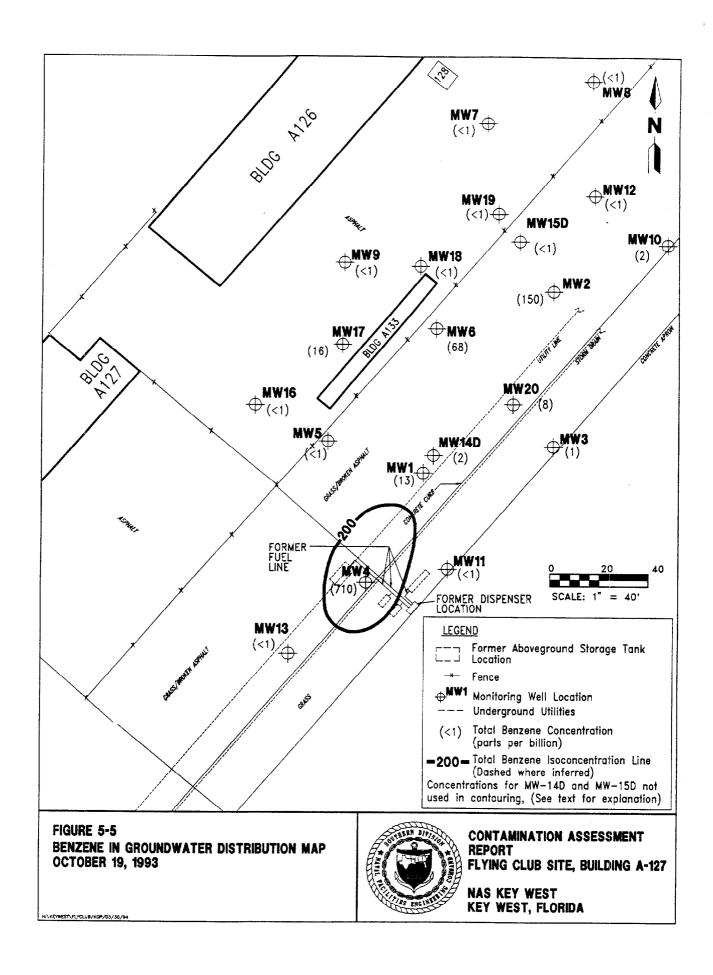
TRPH = total recoverable petroleum hydrocarbons.

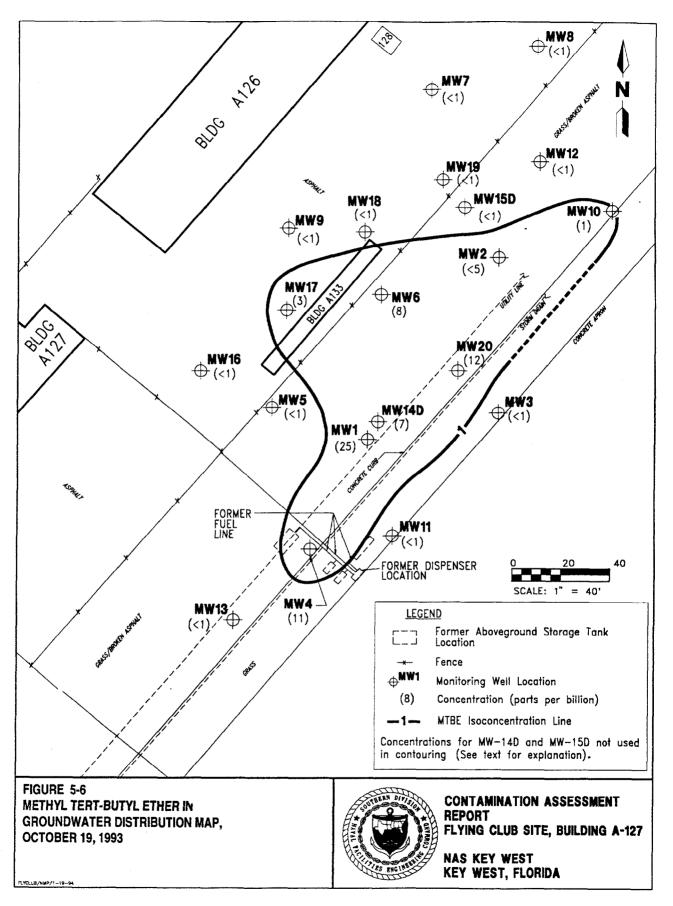
²Class G-II groundwater guidelines, Chapter 17-770, Florida Administrative Code.

³Groundwater guidance concentration (FDER, February 1989).

well or soil boring at the site. For petroleum compounds regulated under Chapter 17-770, FAC, Class G-III groundwater target levels will be used, where applicable. State target levels for G-III groundwater have been established for benzene (200 parts per billion [ppb]), total VOA (200 ppb), TRPH (5 ppm), and lead (50 ppb). (Total VOA is the sum of benzene, ethylbenzene, toluene, and xylenes).


Class G-III groundwater target levels have not been established for MTBE and PAH (including naphthalenes) and the chlorinated compounds detected in groundwater samples collected at the site. Groundwater target levels for MTBE and naphthalenes are available for Class G-II groundwater (Chapter 17-770, FAC). A target level of 100 ppb for total naphthalenes (the sum of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene) has been established for Class G-II groundwater (Chapter 17-770, FAC). The MTBE target level in Class G-II groundwater is 50 ppb. For comparative purposes only, the Class G-II groundwater target levels for MTBE and naphthalenes will be applied herein, and PAH (excluding naphthalenes) and chlorinated hydrocarbon concentrations will be compared to State recommended guidance concentrations established by FDER (February 1989).

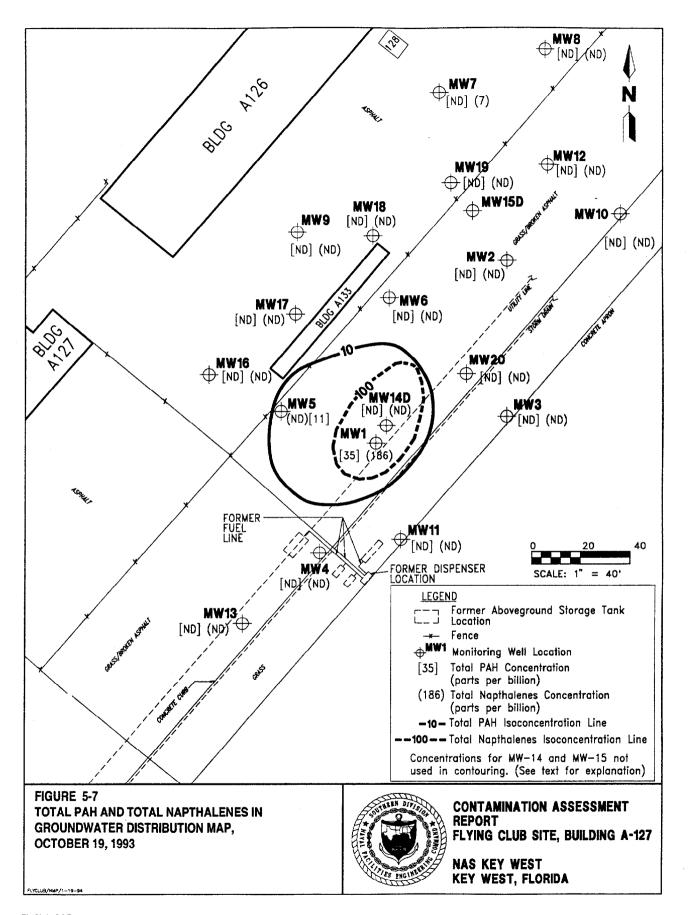

5.2.2.1 Total Volatile Organic Aromatics (VOA) in Groundwater VOAs were detected in samples collected from monitoring wells MW-1 through MW-4, MW-6, MW-10, MW-14D, MW-17, MW-18, and MW-20 (Figure 5-4). The State target level for G-III groundwater of 200 ppb for total VOA was exceeded in only the samples collected from monitoring wells MW-4 and MW-6. Total VOA concentrations for these samples were 305 ppb and 1,300 ppb, respectively. The areal extent of total VOA concentrations exceeding the State target level of 200 ppb is shown as two separate areas enclosed by the 200 ppb isoconcentration lines in Figure 5-4. The composite areal extent of both areas extends from the former locations of the AVGAS ASTs approximately 135 feet northeasterly to near the southeast corner of Building A-133.

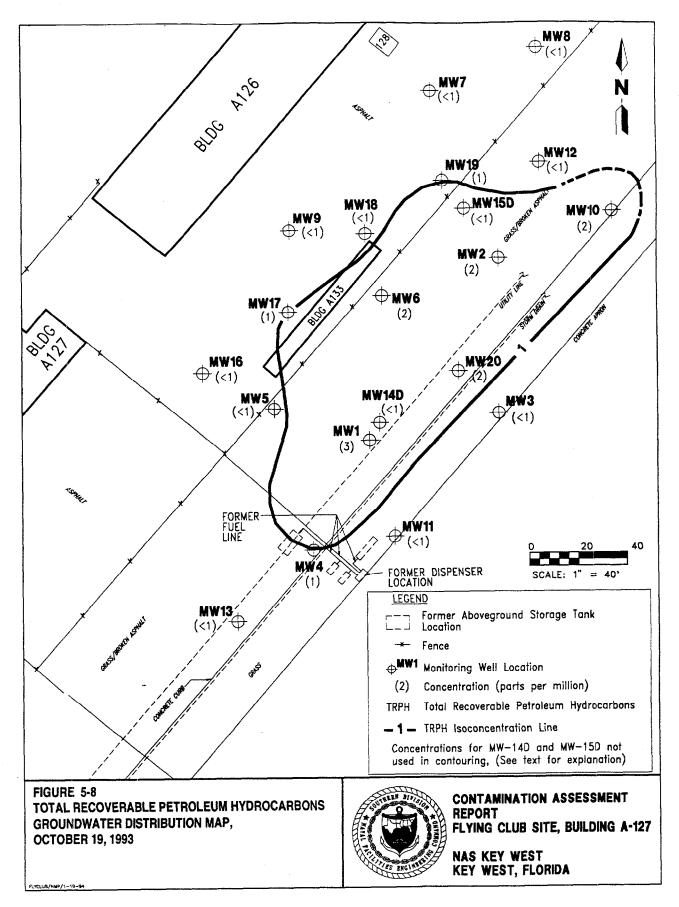

Concentrations of benzene exceed the State target level for G-III groundwater in only the sample collected from monitoring well MW-4; in which the benzene concentration was 710 ppb. The approximate areal extent of benzene groundwater concentration above 200 ppb is shown in Figure 5-5. The highest concentrations of ethylbenzene (140 ppb, detected in the sample collected from monitoring well MW-6), toluene (130 ppb, detected in the sample collected from monitoring well MW-4), and xylenes (460 ppb, detected in the sample collected from monitoring well MW-4) are below current drinking water standards of 700 ppb, 1,000 ppb, and 10,000 ppb, respectively (Chapter 17-550, FAC).

The vertical extent of total VOA in groundwater does not appear to be significant. The total VOA concentration in the sample collected from monitoring well MW-14D, located in the approximate center of the total VOA plume, was 6 ppb, which is well below the State target level of 200 ppb. Total VOA were not detected in the sample collected from the other vertical extent monitoring well, MW-15D, which was screened from 20 to 25 feet bls and is located outside the total VOA plume.

5.2.2.2 Methyl-tert-butyl Ether (MTBE) in Groundwater MTBE was detected in groundwater samples collected from monitoring wells MW-1, MW-4, MW-6, MW-10, MW-14D, MW-17, and MW-20 (Figure 5-6). The areal extent of MTBE in groundwater is

designated by the area inside the 1 ppb isoconcentration lines on Figure 5-6. Reported MTBE concentrations are below the State target level of 50 ppb for G-II groundwater. The highest MTBE concentration, 25 ppb, was detected in the sample collected from monitoring well MW-1, located downgradient of the former AVGAS ASTs. MTBE concentrations in groundwater appear to decrease with depth. A concentration of 7 ppb was also detected in the sample collected from monitoring well MW-14D, located adjacent to monitoring well MW-1. Because MTBE groundwater concentrations are below State target levels for G-II groundwater, MTBE in groundwater does not appear to be a concern at the site.


5.2.2.3 Total Polynuclear Aromatic Hydrocarbons (PAH) (including Naphthalenes) in Groundwater PAHs were detected in only the samples collected from monitoring wells MW-1, MW-5, and MW-7 (Table 5-3). PAHs detected in groundwater samples include naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, benzo(a)pyrene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene.

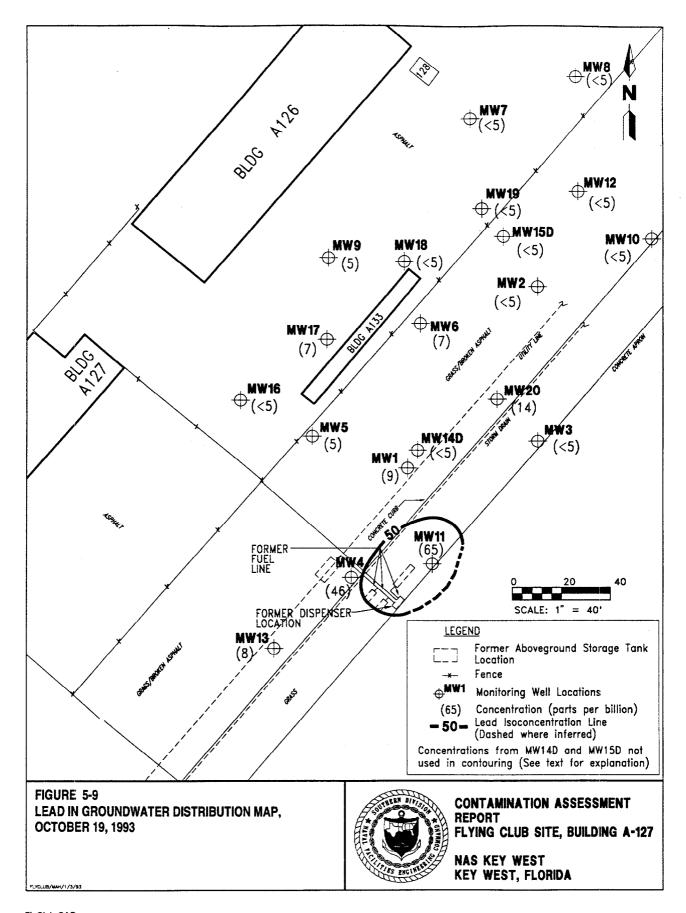

Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene, were detected in the sample collected from monitoring well MW-1, at concentrations of 120 ppb, 18 ppb, and 48 ppb, respectively. Naphthalene was also detected in the sample collected from monitoring well MW-7 at a concentration of 7 ppb. Total naphthalene concentrations exceeded the Class G-II groundwater target level of 100 ppb in only the sample collected from monitoring well MW-1, located approximately 50 feet downgradient of the former AVGAS ASTs (Figure 5-7). The areal extent of total naphthalenes in groundwater exceeding 100 ppb is approximated by the 100 ppb isoconcentration lines on Figure 5-7.

PAH (excluding naphthalenes) were detected in only the samples collected from monitoring wells MW-1 and MW-5. Total PAH (excluding naphthalenes) concentrations are presented in Table 5-3 and are graphically shown on Figure 5-7. Benzo(a)pyrene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected in the sample collected from monitoring well MW-1, at concentrations of 5 ppb, 12 ppb, 9 ppb, and 9 ppb, respectively. Benzo(g,h,i)-perylene and dibenzo(a,h)anthracene were also detected in the sample collected from monitoring well MW-5 at concentrations of 6 ppb and 5 ppb, respectively. The groundwater guidance concentration for a particular PAH is 10 ppb (FDER, February 1989). The areal extent of PAH (excluding naphthalenes) groundwater concentrations exceeding the groundwater guidance concentration is enclosed within the 10 ppb isoconcentration lines on Figure 5-7. This area approximately coincides with the 100 ppb total naphthalenes isoconcentration lines, but extends closer to Building A-133 in the vicinity of monitoring well MW-5.

The vertical extent of PAH (including naphthalenes) in groundwater does not appear to extend below 25 feet bls. PAHs (including naphthalenes) were not detected in monitoring well MW-14D, which is located next to monitoring well MW-1 and is screened from 25 to 30 feet bls.

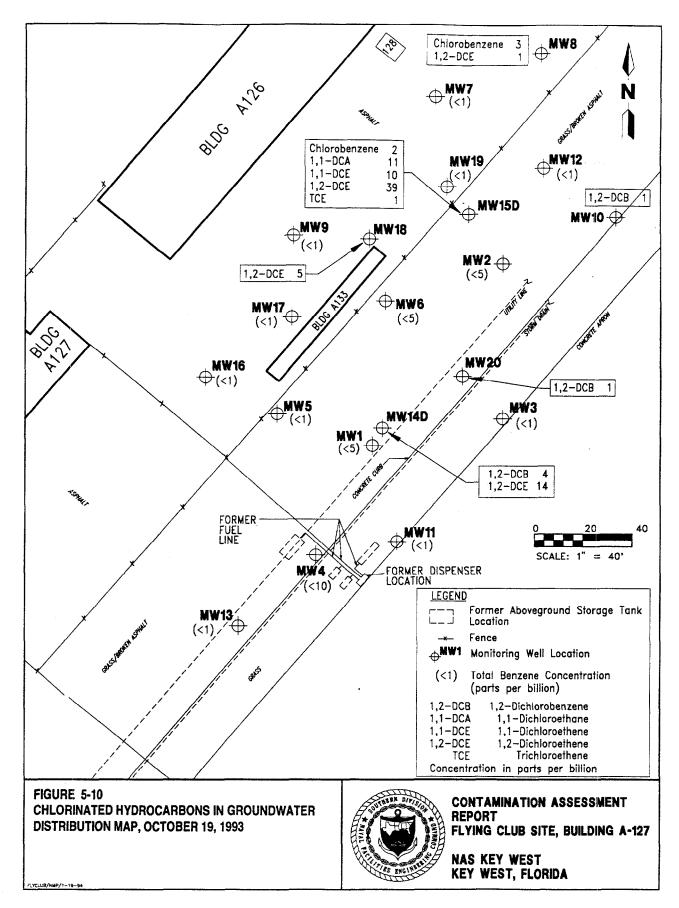
5.2.2.4 Total Recoverable Petroleum Hydrocarbons (TRPH) in Groundwater TRPH were detected in the samples collected from monitoring wells MW-1, MW-2, MW-4, MW-6, MW-10, MW-17, MW-19, and MW-20 (Figure 5-8). All reported TRPH concentrations were below the State target level of 5 ppm for Class G-III groundwater. The highest TRPH concentration (3 ppm) was detected in the sample collected from monitoring well MW-1, located approximately 50 feet downgradient of the former AVGAS ASTs.

Groundwater analytical data indicate the vertical extent of TRPH in groundwater does not extend below 25 feet bls. TRPHs were not detected (<1 ppm) in samples collected from the vertical extent monitoring wells (MW-14D and MW-15D).


- 5.2.2.5 Lead in Groundwater Lead was detected in the samples collected from monitoring wells MW-1, MW-4, MW-5, MW-6, MW-9, MW-11, MW-13, MW-17, and MW-20, at concentrations ranging from 5 ppb to 65 ppb (Figure 5-9). Lead concentrations exceeded the State target level of 50 ppb for Class G-III groundwater in only the sample collected from monitoring well MW-11 (65 ppb). Monitoring well MW-11 is located in the vicinity of the former AVGAS ASTs. Lead was not detected in the samples collected from the two vertical extent monitoring wells (MW-14D and MW-15D).
- 5.2.2.6 Chlorinated Compounds in Groundwater Seven chlorinated compounds were detected in groundwater samples. These include chlorobenzene, 1,2-dichlorobenzene (1,2-DCB), 1,1-dichloroethane (1,1,-DCA), 1,1-dichloroethene (1,1,-DCE), 1,2-dichloroethene (1,2-DCE), methylene chloride, and trichloroethene (TCE).

Chlorobenzene was detected in only the samples collected from monitoring wells MW-8 and MW-15D, at concentrations of 3 ppb and 2 ppb, respectively. These concentrations are less than the State groundwater guidance concentration of 10 ppb (FDER, February 1989).

The compound 1,2-DCB was detected in only the samples collected from monitoring wells MW-10 and MW-14D, at concentrations of 1 ppb and 4 ppb, respectively. These concentrations are less than the State groundwater guidance concentration of 10 ppb (FDER, February 1989). The compound 1,1-DCA was detected in only the sample collected from monitoring well MW-15D, at a concentration of 11 ppb, which is well below the State groundwater guidance concentration of 2,400 ppb (FDER, February 1989). The compound 1,1-DCE was detected in only the sample collected from monitoring well MW-15D, at a concentration of 10 ppb, which slightly exceeds the State groundwater guidance concentration of 7 ppb (FDER, February 1989).


The compound 1,2-DCE was detected in the samples collected from monitoring wells MW-8, MW-14D, MW-15D, MW-18, and MW-19. Concentrations of cis 1,2-DCE (Table 5-3) exceed the State groundwater guidance concentration (FDER, February 1989) of 4.2 ppb in the samples collected from monitoring wells MW-14D (14 ppb), MW-15D (38 ppb), and MW-19 (5 ppb). Concentrations of trans 1,2-DCE (indicated in parentheses in Table 5-3) exceed the groundwater guidance concentration of 4.2 ppb (FDER, February 1989) in only the sample collected from monitoring well MW-19 It should be noted that although 1,2-DCE concentrations exceed groundwater guidance concentrations established by FDER (February 1989), cis 1,2-DCE and trans 1,2-DCE concentrations do not exceed the current primary drinking water standards of 70 ppb (USEPA, May 1993) and 100 ppb (Chapter 17-550, FAC), respectively. Total 1,2-DCE concentration (the sum of the concentrations of cis 1,2-DCE and trans 1,2-DCE) are reported in Appendix E, Groundwater Sample Analytical Data. (Note: in some instances the "total' result may not equal the sum of the cis and trans configurations due to rounding of results prior to reporting.)

TCE was detected in only the sample collected from monitoring well MW-15D, at a concentration of 1 ppb, which is less than the State groundwater guidance concentration of 3 ppb (FDER, February 1989).

Concentrations of methylene chloride detected in samples collected from monitoring wells MW-1, MW-2, MW-3, MW-6, MW-10, MW-13, MW-14D, MW-15D, MW-16, MW-17, and MW-20, ranged from 1 ppb to 45 ppb. Methylene chloride concentrations detected in the equipment blank, the trip blank, and the laboratory blank were 14 ppb, 2 ppb, and 2 ppb, respectively. It appears that methylene chloride detected in groundwater samples is the result of laboratory contamination. For this reason, methylene chloride data are not presented on Figure 5-10.

<u>5.3 POTABLE WELL SURVEY</u>. Research of facility records indicate there are no potable wells on Boca Chica Key. Potable water at Boca Chica Field is imported from mainland Florida through the Florida Keys Aqueduct.

6.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

- <u>6.1 SUMMARY</u>. Based on the findings of the CA field investigations and laboratory analytical results, the following is a summary of existing conditions at the site.
 - The primary water-bearing zone of concern at the site is the surficial aquifer. The surficial aquifer in the Boca Chica area is unconfined. Water quality data indicate that the surficial aquifer in the Key West area is an unlikely source of potable water (McKenzie, 1990); thus, the surficial aquifer is treated herein as a Class G-III groundwater source.
 - The surficial aquifer was penetrated to a depth of 32 feet bls during this investigation. Indigenous subsurface material is generally composed of a mixture of oolitic sand; light gray, non-plastic clay; and limestone gravel.
 - The water table at the site was encountered at depths ranging from 2.5 to 4.5 feet bls.
 - The direction of groundwater flow in the surficial aquifer is to the northeast. A tidal influence study indicates that groundwater elevations are tidally affected; however, the direction of groundwater flow appears to be consistently to the northeast.
 - Four separate areas of excessively contaminated soil were indicated by OVA headspace analyses. The most extensive soil contamination was detected along the southeast side of Building A-133 (Figure 5-3). Excessive soil contamination appears to be restricted to within 1 to 2 feet above the top of the water table.
 - Total VOA, MTBE, PAH (including naphthalenes), TRPH, lead, and several chlorinated compounds were detected in groundwater samples. Total VOA, TRPH, and lead State target levels for Class G-III groundwater were applied (Chapter 17-770, FAC). Because Class G-III groundwater target levels are not available for the other contaminants, other standards were applied for comparative purposes. MTBE and total naphthalenes concentrations were compared to Class G-II groundwater target levels (Chapter 17-770, FAC). PAH (excluding naphthalenes) and chlorinated compound concentrations were compared to State groundwater guidance concentrations (FDER, February 1989).
 - State target levels for Class G-III groundwater were exceeded for total VOA, benzene, and lead (See Figures 5-4, 5-5, and 5-9, respectively). Total VOA concentrations exceeded the State target level of 200 ppb in only the samples collected from monitoring wells MW-4 (1,300 ppb) and MW-6 (305 ppb). Lead exceeded the State target level of 50 ppb in only the sample collected from monitoring well MW-11 (65 ppb). TRPH concentrations were below the State target level of 5 ppm for Class G-III groundwater.

- Total naphthalenes concentrations exceed the State target level of 100 ppb for G-II groundwater in only the sample collected from monitoring well MW-1 (186 ppb) (See Figure 5-7). PAH concentrations exceed the State groundwater guidance concentration of 10 ppb in only the samples collected from monitoring wells MW-1 (35 ppb) and MW-6 (11 ppb).
- Concentrations of 1,1-DCE and 1,2-DCE exceed the State groundwater guidance concentrations of 7 ppb and 4.2 ppb, respectively. Concentrations of 1,1-DCE were detected in only the sample collected from monitoring well MW-15D (10 ppb). Concentrations of 1,2-DCE are below current drinking water standards (Chapter 17-550, FAC).
- No potable water sources were identified within a 0.25-mile radius of the site. There are no potable wells on Boca Chica Key.
- · No free product was found in any site monitoring wells.

6.2 CONCLUSIONS. Based on the findings of the CA and site conditions, the following can be concluded.

- Excessively contaminated soil directly above the water table may be an indication of residual groundwater contamination rather than soil contamination. The highest OVA headspace readings were almost exclusively recorded in samples collected just above the water table. The tidal influence study indicates that significant variations in water table elevations as a result of tidal fluctuations occur at the site. The vertical movement of the groundwater as a result of tidal fluctuations will cause a spreading of contamination in the soil both immediately above and below the water table (see Appendix D, Tidal Influence Study). The high OVA readings recorded in soil samples collected just above the water table may be the result of residual groundwater contamination during periods of low water table elevations.
- The areal extent of groundwater contamination exceeding applicable (and compared) standards appears to be restricted to the vicinity of the former AVGAS ASTs and along the southeast side of Building A-133, near the former motor pool refueling point.
- Benzene is the major contaminant of concern at the site. Benzene concentrations exceed the State target level of 200 ppb for Class G-III groundwater in only the sample collected from monitoring well MW-4 (710 ppb) (see Figure 5-5).
- Groundwater petroleum contamination appears to decrease with depth. With the exception of 1,1-DCE, which was detected in the sample collected from vertical extent monitoring well MW-15D, contaminant concentrations were either not detected or were below applicable (or compared) standards in the samples collected from the vertical extent wells, MW-14D and MW-15D.
- The reported sources of groundwater contamination, the AVGAS ASTs, associated piping and dispensers, and the gasoline USTs located at the

former motor pool refueling point near Building A-133, have been removed from the site.

- Because there are no potable water sources at Boca Chica Field, the risk to human health caused by groundwater contamination at the site appears to be low.
- There is no evidence indicating that groundwater contaminants are migrating off the site. There are no surface water bodies that appear to be threatened by the contaminated area. Therefore, groundwater contamination at the site appears to be a low risk to area fish and wildlife.
- 6.3 RECOMMENDATIONS. Based on the findings, conclusions, and interpretations of the CA, ABB-ES recommends that groundwater remediation be implemented at the site to comply with State regulations regarding concentrations of benzene, lead, and total VOA in Class G-III groundwater. The manner of groundwater remediation will be presented in a remedial action plan (RAP), which will be developed pending FDEP approval of this CAR.

7.0 PROFESSIONAL REVIEW CERTIFICATION

This contamination assessment report was prepared using sound hydrogeologic principles and judgment. This assessment is based on the geologic investigation and associated information detailed in the text and appended to this report. If conditions are determined to exist that differ from those described, the undersigned geologist should be notified to evaluate the effects of any additional information on the assessment described in this report. This Contamination Assessment Report was developed for the Flying Club Site, Building A-127, at Boca Chica Field, Naval Air Station, Key West, Florida, and should not be construed to apply to any other site.

Roger Burham

Professional Geologist

P.G. No. 1127

APRIL 2,1994

Date

REFERENCES

- Bouwer, H. 1989, The Bouwer and Rice slug test, an update: Groundwater, vol. 127, p. 304-309.
- Bouwer, H., and Rice, R.C., 1976, A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: Water Resources Research, vol. 12, no. 3, p. 423-428.
- Davis, S.N., and DeWiest, R.J.M., 1966, Hydrogeology: New York, John Wiley & Sons, Inc., 463 p.
- Florida Department of Environmental Regulation, February 1989, Groundwater guidance concentrations: compiled by R. Merchant, Division of Water Facilities, 14 p.
- Florida Department of Environmental Regulation, May 1992, Guidelines for assessment and remediation of petroleum contaminated soils, revised: Division of Waste Management, 39 p.
- Geraghty & Miller, 1989, AQTESOLV $^{\text{m}}$, aquifer test design and analysis: computer program version 1.00.
- Hoffmeister, J.E., 1974, Land from the sea, the geologic story of south Florida: Coral Gables, University of Miami Press, 143 p.
- McKenzie, D.J., 1990, Water resources potential of the freshwater lens at Key West, Florida: U.S. Geological Survey Water-Resources Investigations Report 90-4115, 24 p.
- U.S. Department of Commerce, 1990, East coast of North and South America tide tables, 1991, High and Low Water Predictions: National Oceanic and Atmospheric Administration.
- U.S. Environmental Protection Agency, May 1993, Drinking water regulations and health advisories: Office of Water, 13 p.
- U.S. Geological Survey, 1971, Boca Chica Key, Florida, quadrangle: 7.5-minute orthophotographic series.
- White, W.A., 1970, The geomorphology of the Florida peninsula: Florida Bureau of Geology Bulletin No. 51, 164 p.

APPENDIX A SITE CONDITIONS

Regional and Local Physiography

The State of Florida is divided into three geomorphic zones: the northern or proximal zone, the central or mid-peninsular zone, and the southern or distal zone (White, 1970). Boca Chica Key is part of the Lower Keys and is located entirely within the southern or distal zone. This area is characterized by a sparse veneer of residual soil and surface vegetation overlying eroded limestone. The topography of the Lower Keys is generally smooth and flat in the center of the key and slopes gently downward toward the shoreline (White, 1970).

Regional and Local Hydrogeology

The Lower Keys are overlain by an oolitic member of the Pleistocene Miami Limestone. The Key Largo coral reef limestone underlies the Miami Limestone. Hoffmeister (1974) reported that the Miami Limestone is 27 feet thick and the Key Largo Limestone is greater than 270 feet thick in the western part of Key West. The Key Largo Limestone is generally more porous than the Miami Limestone. Surficial and shallow subsurface features in the area have often been altered by imported fill material.

The surficial aquifer in the Boca Chica area is unconfined. The water table is found at shallow depths in the area, generally occurring from less than 1 foot to 10 feet below land surface. The surficial aquifer is contained within the Miami Limestone, the underlying Key Largo Limestone, and surficial fill materials. The limestones generally contain brackish or saline water. Recharge to the aquifer is directly from precipitation, and infiltration rates are rapid. Groundwater flow discharge is to surrounding surface waters.

APPENDIX B
LITHOLOGIC LOGS

CONTRACTOR: Groundwater Protection, Inc. CONTRACTOR: GROUNDWATER INC. CONTRACTOR:	TITLE: NAS Key West, Flying Clui	LOG of	WELL: KYW-A127-1	BORING NO. SB10
METHOD: 4.25" HSA CASE SIZE: 2 inch TOC ELEV.: 10.46 FT. MONITOR INST.: 0VA TOT DPTH: 12 FT. DPTH TO \$ 3.57 FT. LOGGED BY: J. Koch WELL DEVELOPMENT DATE: 10/15/93 SITE: NAS Key Mest, Flying Club SAMPLE ID: \$ 3.57 FT. LABORATORY \$ 3.57 FT. SOIL/ROCK DESCRIPTION AND COMMENTS SOIL/ROCK DESCRIPTION AND COMMEN	CLIENT: SOUTHNAVFACENGCOM			PROJECT NO: 8508-30
TOC ELEV.: 10.45 FT. LOGGED BY: J. Koch MELL DEVELOPMENT DATE: 10/15/93 SITE: NAS Key West, Flying Club EL LABORATORY AND COMMENTS SOIL/ROCK DESCRIPTION AND COMMENTS BLOWS/8-IN SOIL/ROCK DESCRIPTION AND COMMENTS BLOWS/8-IN SOIL/ROCK DESCRIPTION AND COMMENTS SOIL/ROCK DESCRIPTION AND COMMENTS BLOWS/8-IN BL	CONTRACTOR: Groundwater Prote	ection, Inc.	DATE STARTED: 10/15/93	COMPLTD: 10/15/93
LOGGED BY: J. Koch WELL DEVELOPMENT DATE: 10/15/93 SITE: NAS Key West, Flying Club LABORATORY BY	METHOD: 4.25" HSA	CASE SIZE: 2 inch	SCREEN INT.: 2 - 12 FT.	PROTECTION LEVEL: D
LABORATORY AND COMMENTS SAND: silty, clayey, calcareous, light brown to gray, fine-to coarse-grained with gravel. Slight odor. SAND: clayey, calcareous, light brown to gray, fine-to coarse-grained with gravel. Slight odor. As above. Strong odor.	TOC ELEV.: 10.45 FT.	MONITOR INST.: OVA	TOT DPTH: 12FT.	DPTH TO ♀ 3.57 FT.
SAND: slity, clayey, calcareous, medium brown to light brown, fine- coarse-grained. Slight odor. SAND: clayey, calcareous, light brown to gray, fine- to coarse-grained with gravel. Slight odor. As above. Strong odor.	LOGGED BY: J. Koch	WELL DEVELOPMENT DATE: 10/	15/93	SITE: NAS Key West, Flying Club
SAND: silty, clayey, calcareous, medium brown to light brown, fine—coarse—grained. Slight odor. SAND: clayey, calcareous, light brown to gray, fine—to coarse—grained with gravel. Slight odor. As above. Strong odor.	DEPTH FT. FT. OI STANDERS SAMPLE RECOVERY HEADSPACE	SOIL/ROCK DESCRIPT AND COMMENTS	Z Z SYMBOL	
	5— 250	SAND: silty, clayey, calcareous, med brown, fine- coarse-grained. Slight SAND: clayey, calcareous, light brow to coarse-grained with gravel. Slight Sand Sand Sand Sand Sand Sand Sand Sand	dium brown to light to dor.	GC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	15—			

TITLE: NAS	Key West,	Flying	g Club		LOG o	f WELL: KYW-A127-	2	BORI	ING NO. SB49	
CLIENT: SO	UTHNAVFA	CENG	СОМ					PROJ	JECT NO: 8508-30	
CONTRACTO	R: Ground	water	Protec	tion, Inc.		DATE STARTED: 1	0/15/93	COMPLTD; 10/15/93		
METHOD: 4.	25" HSA			CASE SIZE: 2 inch	SCREEN INT.: 2 - 12 FT.			PROTECTION LEVEL: D		
TOC ELEV.:	10.56 FT.	•		MONITOR INST.: OVA	TOT DPTH: 12FT.			OPTH	TO ♀ 3.85 FT.	
LOGGED BY	: J. Koch			WELL DEVELOPMENT	DATE: 10	/15/93		SITE:	NAS Key West, Fly	ying Club
SAMPLE SAMPLE SAMPLE (PPM SPACE (PPM)				SOIL/ROCK AND CO	DESCRIPT	TION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6~IN	WELL DATA
			0	SAND: clayey, calcareous, to coarse— grained with g				GC		
-			0							
5			950	SAND: clayey, calcareous, to coarse- grained with g						
7				odor.						
10—				SAND: clayey, calcareous, coarse-grained with grave						
				·						
-										L
15						C-2 ABB			TAL SERVICES,	

TITLE: NAS Key West, Fly	/ing Club		LOG of	WELL: KYW-A127-	3	BOR	ING NO. SB21		
CLIENT: SOUTHNAVFACE	NGCOM					PROJECT NO: 8508-30			
CONTRACTOR: Groundwate	er Protecti	on, Inc.		DATE STARTED:	10/15/93		COMPLTD: 10/15	/93	
METHOD: 4.25" HSA		CASE SIZE: 2 inch		SCREEN INT.: 2	– 12 FT.	PROT	ECTION LEVEL: D	700	
TOC ELEV.: 9.55 FT.		MONITOR INST.: OVA		TOT DPTH: 12FT.		DPTH	I TO ♀ 2.74 FT.		
LOGGED BY: R. Durham, J	l. Koch	WELL DEVELOPMENT	DATE: 10.	/15/93		SITE	: NAS Key West, FI	ying Club	
L LABORATORY LA	HEADSPACE (ppm)	SOIL/ROCK AND CO	DESCRIPT OMMENTS	ION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA	
5—	<1	LIMESTONE: sandy, fine-glight brown. <i>No odor</i> . SAND: calcareous, light br fine-grained. SAND: clayey, calcareous, to coarse- grained with g	own, silty	to very		SP			
15—		DAC	E 1 of F	C 2 ADD	ENIVIDO	NIMENI	TAL SERVICES	INC	

CLIENT: SOUTHNAVFACI CONTRACTOR: Groundwa METHOD: 4.25" HSA TOC ELEV.: 10.70 FT. LOGGED BY: J. Koch		CASE SIZE: 2 inch MONITOR INST.: 0VA WELL DEVELOPMENT D	DATE STARTED: SCREEN INT.: 2 TOT DPTH: 12FT.	- 12 FT.		JECT NO: 8508-30 COMPLTD: 10/15 ECTION LEVEL: D				
METHOD: 4.25" HSA TOC ELEV.: 10.70 FT. LOGGED BY: J. Koch	iter Protec	CASE SIZE: 2 inch MONITOR INST.: OVA	SCREEN INT.: 2	- 12 FT.	-		/93			
TOC ELEV.: 10.70 FT.		MONITOR INST.: OVA			-	ECTION LEVEL: D				
LOGGED BY: J. Koch			TOT OPTH: 12FT.				PROTECTION LEVEL: D			
		WELL DEVELOPMENT D		OVA TOT OPTH: 12FT.						
т ш			ATE: 10/15/93		SITE	: NAS Key West, Fly	ying Club			
SAMPLE IO.	RECOVERY HEADSPACE (ppm)	SOIL/ROCK D AND COM		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA.			
5	2500	SAND: clayey, silty, calcare to coarse- grained. No odd SAND: clayey, silty, calcare to coarse- grained with grained with coarse grave. SAND: clayey, calcareous, lito coarse- grained with grained wit	ous, medium brown, fine-vel. Slight odor.		GC GC					

TITL	E: NAS K	ey We	st, Fly	ing Club		LOG of	' WELL: KYW-A127-	5	BOF	IING NO. SB17	
CLIE	NT: SOUT	HNAV	FACEN	NGCOM					PRO	JECT NO: 8508-30	
CONT	RACTOR	Groui	ndwate	er Protec	tion, Inc.		DATE STARTED:	10/15/93	<u> </u>	COMPLTD: 10/15/	/93
METH	10D: 4.25	" HSA			CASE SIZE: 2 inch		SCREEN INT.: 2	- 12 FT.	PROT	ECTION LEVEL: D	
TOC	ELEV.: 10	.86 F	۲.		MONITOR INST.: OVA	1	TOT DPTH: 12FT.		DPTH	I TO ♀ 3.95 FT.	
LOGG	ED BY:	J. Kac	h		WELL DEVELOPMENT	DATE: 10	/15/93		SITE	: NAS Key West, Fly	ing Club
OEPTH FT.	LABORAT SAMPLE	ORY W ID. W	RECOVERY	HEADSPACE (ppm)		LITH SYLVENIA				BLOWS/6-IN	WELL DATA
-				0	SAND: silty, calcareous, lig coarse-grained. <i>No odor</i>		fine- to		SM	,	
				0					SC		
5				0	SAND: silty, clayey, calca coarse-grained.	reous, ligh	t brown, fine- to				
-											
	-				SAND: clayey, calcareous	, light bro	wn to white, fine-				
10					to coarse- grained.						
	-										
15—											
"					D v C	E 1 of F	C_E	ENVIDO	MEN	TAL SERVICES,	TNIC

CLIENT: SOUTHNAVFACENGOM CONTRACTOR: Groundwater Protection, Inc. CASE SIZE: 2 inch CA	TITLE: NAS Key West, Flying Club		LOG of	WELL: KYW-A127-	6	BOR	ING NO.	
METHOD: 4.25" HSA CASE SIZE: 2 inch SCREEN INT.: 2 - 12 FT. PROTECTION LEVEL: D DPH TO \$\frac{7}{2}\$ 3.86 FT. LOGGED BY: J. Koch MELL DEVELOPMENT DATE: 10/15/93 SITE: NAS Key west, Flying Club Lasonatory \$\frac{7}{2}\$	CLIENT: SOUTHNAVFACENGCOM					PRO	JECT NO: 8508-30	
TOC ELEV.: 10.99 FT. DOTH TO \$ 3.86 FT. DOGED BY: J. Koch WELL DEVELOPMENT DATE: 10/15/93 SITE: NAS Key West. Flying Club SOIL/ROCK DESCRIPTION AND COMMENTS SOIL ROCK DESCRIPTION AND COMMENTS SAND: clayey, calcareous, light brown, fine— to coarse—grained. Strong petroleum odor. SAND: clayey calcareous, light brown to gray, fine—to coarse—grained with gravel. Strong petroleum odor.	CONTRACTOR: Groundwater Protectio	n, Inc.		DATE STARTED:	10/15/93		COMPLTD: 10/15,	/93
SAND: clayey calcareous, light brown to gray, fine- to coarse-grained with gravel. Strong petroleum odar. SAND: clayey calcareous, light brown to gray, fine- to coarse-grained with gravel. Strong petroleum odar.	METHOD: 4.25" HSA	CASE SIZE: 2 inch		SCREEN INT.: 2	- 12 FT.	PROT	ECTION LEVEL: D	
SAND: clayey, calcareous, light brown to gray, fine- to coarse-grained with gravel. Strong petroleum SAND: clayey calcareous, light brown to gray, fine- to coarse-grained with gravel. Strong petroleum odor.	TOC ELEV.: 10.69 FT.	MONITOR INST.: OVA		TOT DPTH: 12FT.		DPTH	T O ♀ 3.86 FT.	
SAND: clayey, calcareous, light brown, fine- to coarse-grained. Strong petroleum odor. SAND: clayey calcareous, light brown to gray, fine- to coarse-grained with gravel. Strong petroleum odor.	LOGGED BY: J. Koch	WELL DEVELOPMENT	DATE: 10/	/15/93		SITE	: NAS Key West, Fly	ring Club
SAND: clayey, calcareous, light brown, fine— to coarse—grained. Strong petroleum odor. SAND: clayey calcareous, light brown to gray, fine—to coarse—grained with gravel. Strong petroleum ador.	DEPTH FT. GIGARASSAMPLE SAMPLE RECOVERY HEADSPACE (ppm)			ION	LITHOLOGIC		BLOWS/6-IN	WELL DATA
	5—————————————————————————————————————	oarse-grained. <i>Strong p</i> AND: clayey calcareous, o coarse-grained with gr	light brow	odor. In to gray, fine-				

TITLE: NAS Key West, Flying Club	L	OG of WELL: KYW-A127-	-7	 	ING NO.	
CLIENT: SOUTHNAVFACENGCOM CONTRACTOR: Groundwater Protection,	Toc	DATE STARTER	10/15/02	PRO	JECT NO: 8508-30	
METHOD: 4.25" HSA	T	DATE STARTED:		0007	COMPLTD: 10/15	/93
TOC ELEV.: 10.78 FT.	CASE SIZE: 2 inch	SCREEN INT.: 2			ECTION LEVEL: D	
LOGGED BY: J. Koch	MONITOR INST.: OVA WELL DEVELOPMENT DAT	TOT DPTH: 12FT.			I TO ♀ 4.06 FT. : NAS Key West, Fi	in a Club
	WELL DEVELOPMENT DAT	E. 10/13/93		<u> </u>	. NAG Ney West, Fi	
DEPTH FT. SAMPLE SAMPLE FEADSPACE (ppm)	SOIL/ROCK DESI AND COMME		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
	ND: clayey, calcareous, lighter to coarse- grained with	gravel. <i>No odor</i> .		GC	TAL SERVICES,	

TITLE: NAS Key West, F	Flying Club	L	OG of WELL: KYW-A127-	8	BOR	BORING NO. SB44		
CLIENT: SOUTHNAVFAC	ENGCOM				PRO	JECT NO: 8508-30		
CONTRACTOR: Groundwa	ater Protec	tion, Inc.	DATE STARTED:	10/15/93	COMPLTD: 10/15/93			
METHOD: 4.25" HSA		CASE SIZE: 2 inch	SCREEN INT.: 2	– 12 FT.	PROTECTION LEVEL: 0			
TOC ELEV.: 10.64 FT.	···	MONITOR INST.: OVA	TOT DPTH: 12FT.		DPTH	TO ♀ 3.98 FT.		
LOGGED BY: J. Koch	,,	WELL DEVELOPMENT DAT	E: 10/15/93		SITE	: NAS Key West, Fly	ring Club	
L LABORATORY WE SAMPLE ID. 8	RECOVERY HEADSPACE (ppm)	SOIL/ROCK DES		LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA	
-	<1	SAND: clayey, calcareous, ligh fine— to coarse— grained. <i>No</i>			SC .			
	<1	SAND: clayey, calcareous, lighto coarse- grained with grave			GC			
5—	<1	SAND: clayey, calcareous, light fine— to coarse— grained with		000000000				
		SAND: clayey, calcareous, ligh						
	-	gray, fine- to coarse- graine	d with gravel.					

TITLE: NAS	S Key West,	Flying	Club		LOG of	WELL: KYW-A127-	9	BORING NO. SB41				
CLIENT: SO	DUTHNAVFA	CENG	COM					PROJECT NO: 8508-30				
CONTRACT	OR: Ground	ater	Protec	tion, Inc.	DATE STARTED: 10/15/93			COMPLTD: 10/15/93				
METHOD: 4	.25" HSA			CASE SIZE: 2 inch		SCREEN INT.: 2 - 12 FT.			ECTION LEVEL: D			
TOC ELEV.	: 10.92 FT.			MONITOR INST.: OVA		TOT DPTH: 12FT.		DPTH	TO ¥ 4.07 FT.			
LOGGED B	Y: R. Durhar	π, J. K	och	WELL DEVELOPMENT	DATE: 10	/15/93		SITE	: NAS Key West, Fly	ving Club		
H L LABOR	HEAD SPACE TO THE ADSPACE TO THE ADS				DESCRIPT	ION	LITHOLOGIC SYMBOL	SOIL CLASS	∃LOWS/6-IN	WELL DATA		
			0	SAND: silty, calcareous, lig medium-grained. <i>Slight od</i>		, fine- to		SM				
			0	SAND: clayey, calcareous to coarse— grained with g		GC						
5			2									
							000000000000000000000000000000000000000			1 1		
				SAND: light brown, silty to limestone gravel. <i>No odol</i>		grained with						
10 —							0000000					
4												
15—					E 1 of F	0.0.455		6 6 <i>4</i> 6 7 6 7	TAL SERVICES	TNO		

TITLE: NAS Key West, Flyin	g Club		LOG of	WELL: KYW-A127-	10	BORI	ING NO.	
CLIENT: SOUTHNAVFACENG	СОМ					PROJ	ECT NO: 8508-30	
CONTRACTOR: Groundwater	Protect	tion, Inc.		DATE STARTED:	10/15/93	COMPLTD: 10/15/93		
METHOD: 4.25" HSA		CASE SIZE: 2 inch		SCREEN INT.: 2	- 12 FT.	PROTE	ECTION LEVEL: D	
TOC ELEV.: 10.55 FT.		MONITOR INST.: OVA		TOT DPTH: 12FT.		DPTH	TO ♀ 3.84 FT.	
LOGGED BY: R. Durham		WELL DEVELOPMENT D	ATE: 10	15/93		SITE: NAS Key West, Flying		
DEPTH FT. TI. OI BIAMPS SAMPLE SAMPLE	HEADSPACE (ppm)		SOIL/ROCK DESCRIPTION AND COMMENTS SOIL/S		SOIL CLASS	BLOWS/6-IN	WELL DATA	
		SAND: clayey to coarse-gr limestone gravel. <i>No odor.</i>	ained, lig	ght brown, some	0 0 0 0 0 0	GC		
	<1							
5							·	
		As above. Slight petroleum	odor.					
10-								
15								

	AS Key West,				L06 o	WELL: KYW-A127-	-11	BOF	RING NO. SB7			
	SOUTHNAVFA					1		PRO	JECT NO: 8508-30			
-	CTOR: Ground	vater i	Protec			DATE STARTED:		COMPLTD: 10/15/93				
	4.25" HSA			CASE SIZE: 2 inch		SCREEN INT.: 2	- 12 FT.	PROT	ECTION LEVEL: D			
	V.: 10.00 FT.			MONITOR INST.: 0VA		TOT DPTH: 12FT.		DPTH	1 TO ♀ 3.09 FT.			
								: NAS Key West, Fly	zing Club			
DEPTH PAR SAL	MPLE ID. W	RECOVERY	HEADSPACE (ppm)	SOIL/ROCK AND CO	DESCRIPT DMMENTS	ION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA		
5—			0	SAND: clayey, calcareous, fine— to medium— grained. SAND: clayey, calcareous, coarse—grained with grave SAND: clayey, calcareous, to coarse— grained with gr	light brown.	wn, fine- to		SC				
15—					1 of F(TAL SERVICES.			

TITLE: NAS Key West, Flyin	ig Club		LOG o	F WELL: KYW-A127-1	2	BOR:	ING NO. N/A			
CLIENT: SOUTHNAVFACENG	SCOM					PRO	JECT NO: 8508-30			
CONTRACTOR: Groundwater	Protec	tion, Inc.		DATE STARTED: 1	0/15/93	,	COMPLTD: 10/15/	/93		
METHOD: 4.25" HSA		CASE SIZE: 2 inch		SCREEN INT.: 2 - 12 FT.			PROTECTION LEVEL: D			
TOC ELEV.: 10.56 FT.		MONITOR INST.: 0VA	7	TOT DPTH: 12FT.		DPTH TO ♀ 3.87 FT.				
OGGED BY: J. Koch		WELL DEVELOPMENT	DATE: 10	/15/93		SITE	SITE: NAS Key West, Flying Clu			
DEPTH F1. GI BANDARY SAMPLE SAMPLE RECOVERY	HEAUSPACE (ppm)	SOIL/ROCK AND C	(DESCRIP' COMMENTS	IION	LITHOLOGIC SYMBOL	SOIL CLASS	8LOWS/6-IN	WELL DATA		
-	<1	SAND: clayey, calcareous coarse-grained. <i>No odol</i>		wn, fine- to		SC				
	<1	SAND: clayey calcareous to coarse- grained.	, light bro	wn to white, fine-						
5—	1	g em								
10—										
-										
-										
15			E 1 of F				 TAL SERVICES			

TITLE: NAS Key West	, Flying (Club		LOG of	WELL: KYW-A1	27-13	BOR	ING NO. N/A	
CLIENT: SOUTHNAVE	CENGCO	M					PRO	JECT NO: 8508-30	
CONTRACTOR: Ground	water Pr	otection,	Inc.		DATE STARTE	D: 10/16/93		COMPLTD: 10/16	/93
METHOD: 4.25" HSA			CASE SIZE: 2 inch		SCREEN INT.:	2 - 12 FT.	PROT	ECTION LEVEL: D	
TOC ELEV.: 10.44 FT.			MONITOR INST.: OVA		TOT DPTH: 12F	т.	DPTH	I TO ♀ 3.50 FT.	***************************************
LOGGED BY: J. William	s		WELL DEVELOPMENT	DATE: 10	16/93		SITE	: NAS Key West, Fly	ing Club
DEPH L LABORATORY SAMPLE ID. SAMPLE	RECOVERY	(ppm)	SOIL/ROCK AND C	DESCRIPT	ION	LITHOLOGIC SYMBOL	SOIL CLASS	WELL DATA	
-		0					SC		
-			ND: clayey, calcareous arse- to fine- grained.		light brown,				
5		0							
10-		-							
						·			
									·
15—			DACS	<u>ElofFC</u>	`_13 ^E	R ENVIDOR	.IM⊏ki	TAL SERVICES.	INC

TITLE: NAS Key W	est,	Flying	Club		LOG of	WELL: KYW-A127-14	םו	BOR	NG NO. SB10	
CLIENT: SOUTHNA	VFA	CENGO	OM		· · · · · · · · · · · · · · · · · · ·			PRO	ECT NO: 8508-30	
CONTRACTOR: Grou	undw	ater P	rotec	tion, Inc.	DATE STARTED: 10/16/93		COMPLTD: 10/16/93			
METHOD: 4.25" HSA CASE SIZE: 2 inch					SCREEN INT.: 25 - 30 FT.		PROT	ECTION LEVEL: D		
TOC ELEV.: FT.	•			MONITOR INST.: OVA		TOT DPTH: 30FT.			TO ♀ 4.13 FT.	
LOGGED BY: J. Will	liams			WELL DEVELOPMENT	DATE: 10/	17/93		SITE	NAS Key West, Flyi	ing Club
DEPTH TEADS SAMPLE SAMPLE (PPM) (PPM)					<u> </u>			BLOWS/6-IN	WELL DATA	
O SAND: calcareous, some silt, to light brown, fine- to coars				000	GC					
-			0	SAND: calcareous, some c			000			
5—	1		250	Slight odor. SAND: calcareous, some c			0 0			
-				fine- to coarse-grained strong odor.			000			
				· ·			0 0			
							0			
10—	-						000			
							000			
-							00			
-							9	OL		
15—		12/24	45	ORGANICS: 15-15.3 bis, da				L5	31/30/77/80	
_				15.3-15.5 bls, calcareous, medium-grained, 25-30%	silt and cla	ay. LIMESTONE:				
-				15.5-17 bls, white, highly w	reathered.					
20.							井井			
20—		22/24	210	LIMESTONE: highly weath	ered, whit	e. <i>Slight odor.</i>			30/37/45/50	
-										
-										
25—										
-		24/24	32	LIMESTONE: highly weath	ered, whit	e .	田田		5/8/13/12	目
-										
-										
30—										
-		20/24	11	LIMESTONE: white, uncon to fine sand fragments, li					2/2/7/8	<u> </u>
-				phosphorous, trace quart	z sand, co	parse- to		***************************************		
				medium-grained, angular f	io sub-ah	yuidi.				
35_										

	TITLE: NAS Key West, Flying Clu	lub	LOG of	WELL: KYW-A127-15	5D	BOR	ING NO. SB48	
-	CLIENT: SOUTHNAVFACENGCOM	М				PROJECT NO: 8508-30		
	CONTRACTOR: Groundwater Prot	tection, Inc.		DATE STARTED: 10	/16/93	COMPLTD: 10/16/93		
	METHOD: 4.25" HSA	CASE SIZE: 2 inch	SCREEN INT.: 20 - 25 FT.		PROTECTION LEVEL: D			
	TOC ELEV.: FT.	MONITOR INST.: OVA	TOT DPTH: 25FT.			DPTH	T O ♀ 4.03.FT.	
	LOGGED BY: J. Williams	WELL DEVELOPMENT	DATE: 10	17/93		SITE: NAS Key West, Flying Club		
	DEPTH FT. Granders Tr. SAMPLE SAMPLE RECOVERY	SOIL/ROCK	OESCRIPT	ION	LITHOLOGIC	SOIL CLASS	BLOWS/6-IN	WELL DATA
	-	SAND: calcareous, some s to light gray, fine- to coa			0 0 0	GC		
	-	SAND: calcareous, some of fine- to coarse-grained in			0000			
	5— 220	fine- to coarse-grained		ly, light brown, white, gray, th pebbles, saturated.				
	10— 15— 18/24 22	LIMESTONE: bigbly worth				LS	13/33/47/40 18/23/>100/	
	30—	PAGE	<u>ElofFC</u>	15D ARR F	ENIVIDON	JMEN!	TAL SERVICES, I	NC

TITLE: NAS Key West, F	Tyling Cluc		LOG of 1	WELL: KYW-A127-1	6	BOR	ING NO. SB27			
CLIENT: SOUTHNAVFAC	ENGCOM					PRO.	JECT NO: 8508-30	.,		
CONTRACTOR: Groundwa	ater Prote	ction, Inc.		DATE STARTED: 1	0/16/93		COMPLTD: 10/16	/93		
METHOD: 4.25" HSA		CASE SIZE: 2 inch		SCREEN INT.: 2 - 12 FT.			ECTION LEVEL: D			
TOC ELEV.: 10.84 FT.		MONITOR INST.: OVA		TOT DPTH: 12FT.		DPTH	I TO ♀ 3.91 FT.			
LOGGED BY: R. Durham	, J. Koch	WELL DEVELOPMENT D	DATE: 10/1	6/93		SITE	SITE: NAS Key West, Flying CI			
H L LABORATORY A L	RECOVERY HEADSPACE (DDM)	SOIL/ROCK D AND CON		NC	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA		
	SAND: fine-grained to clayer gray fine-grained sand. Fai					SC				
	<1	SAND: very fine- to medium- gravel, light brown. <i>No odor</i>	ID: very fine- to medium-grained, some limestone vel, light brown. <i>No odor.</i>							
5	<1	SAND: very fine-grained to gravel, light brown.	AND: very fine-grained to silty, some limeston ravel, light brown.							
10			ND: clayey, calcareous, some gravel, light brown to ite, fine- to coarse-grained.							
					0 0 0					
15—										

							WELL: KYW-A127-1	1	BUN.	I NG NO . N/A		
-		CLIENT: SOUTHNAVFACENGCOM							PRO	JECT NO: 8508-30		
	CONTRACTOR: Groundwater Protection, Inc.						DATE STARTED: 10	0/16/93		COMPLTD: 10/16.	/93	
+	METHOD: 4.25	" HSA			CASE SIZE: 2 inch		SCREEN INT.: 2 -	12 FT.	PROT	ECTION LEVEL: D		
	TOC ELEV.: 11.	00 FT.			MONITOR INST.: OVA		TOT DPTH: 12FT.		DPTH	TO ♀ 4.09 FT.	θĘΤ.	
	LOGGED BY: J. Koch			WELL DEVELOPMENT	DATE: 10	/16/93		SITE	: NAS Key West, Fly	ring Club		
	DEPTH FT. SAMPLE SAMPLE RECOVERY HEADSPACE (ppm)			SOIL/ROCK AND C	DESCRIPT OMMENTS	TION	LITHOLOGIC	SOIL CLASS	BLOWS/6-IN	WELL DATA		
	-			<1	SAND: clayey, calcareous fine— to coarse— grained.				SC			
	-			<1	SAND: clayey calcareous,	ivel, light brown to		GC				
	5			3300	white, fine— to coarse—grador.	ained. <i>St</i>	rong petroleum					
	-											
	4											
	10					*						
	_											
i _n												
	15—					<u>Elof</u> F				TAL SERVICES		

ENGCOM								
					PRO	JECT NO: 8508-30		
iter Protec	tion, Inc.		DATE STARTED: 1	0/16/93		COMPLTD: 10/16	/93	
	CASE SIZE: 2 inch		SCREEN INT.: 2	- 12 FT.	PROTECTION LEVEL: D			
	MONITOR INST.: OVA		TOT DPTH: 12FT.		DPTH TO ♀ 4.09 FT. SITE: NAS Key West, Flying Club			
	WELL DEVELOPMENT	DATE: 10	/16/93					
DEPTH FT. FT. SAMPLE SAMPLE RECOVERY HEADSPACE (ppm)		SOIL/ROCK DESCRIPTION AND COMMENTS		LITHOLOGIC	SOIL CLASS	BLOWS/6-IN	WELL DATA	
<1					SC	,		
<1				0 0 0 0 0 0 0	GC			
>500	As above. Slight petroleu	m odor.		00000000				
-								
	<1 >500	WELL DEVELOPMENT SOIL/ROCK AND C SAND: clayey, calcareous fine- to coarse- grained. SAND: clayey, calcareous fine- to coarse- grained As above. Slight petroleus >500	SAND: clayey, calcareous, light broifine— to coarse— grained. No odor. SAND: clayey, calcareous, light broifine— to coarse— grained with grave. As above. Slight petroleum odor.	WELL DEVELOPMENT DATE: 10/16/93 SOIL/ROCK DESCRIPTION AND COMMENTS SAND: clayey, calcareous, light brown to dark brown, fine- to coarse- grained. No odor. SAND: clayey, calcareous, light brown to light gray, fine- to coarse- grained with gravel. As above. Slight petroleum odor.	WELL DEVELOPMENT DATE: 10/16/93 SOIL/ROCK DESCRIPTION AND COMMENTS SAND: clayey, calcareous, light brown to dark brown, fine— to coarse— grained. No odor. SAND: clayey, calcareous, light brown to light gray, fine— to coarse— grained with gravel. >500 As above. Slight petroleum odor.	WELL DEVELOPMENT DATE: 10/16/93 SITE SOIL/ROCK DESCRIPTION AND COMMENTS SCI SAND: clayey, calcareous, light brown to dark brown, fine- to coarse- grained. No odor. SAND: clayey, calcareous, light brown to light gray, fine- to coarse- grained with gravel. >500 As above. Slight petroleum odor.	WELL DEVELOPMENT DATE: 10/16/93 SITE: NAS Key West, Fly SOUL/ROCK DESCRIPTION AND COMMENTS SITE: NAS Key West, Fly BLOWS/6-IN SAND: clayey, calcareous, light brown to dark brown. fine- to coarse- grained. No odor. SAND: clayey, calcareous, light brown to light gray, fine- to coarse- grained with gravel. >500 GC SAND: clayey, calcareous, light brown to light gray, fine- to coarse- grained with gravel. >500 SAND: clayey, calcareous, light brown to light gray, fine- to coarse- grained with gravel.	

TITL	E: NAS K	ey Wes	st, Flyi	ng Club		LOG o	f WELL: KYW-A127-1	9	BOF	RING NO. N/A	
CLIE	NT: SOUT	HNAVI	ACEN	GCOM		1			PRO	DJECT NO: 8508-30	
CON	CONTRACTOR: Groundwater Protection,			tion, Inc.		DATE STARTED: 10	0/16/93	COMPLTD: 10/16/93		/93	
METH	10D: 4.25	' HSA			CASE SIZE: 2 inch		SCREEN INT .: 2 -	12 FT.	PROT	ECTION LEVEL: D	
TOC	ELEV.: 10	.44 F1			MONITOR INST.: OVA	1	TOT DPTH: 12FT.		DPTH	1 TO ♀ 3.74 FT.	
LOGG	ED BY:	J. Kocl	1		WELL DEVELOPMENT	WELL DEVELOPMENT DATE: 10/16/93		SITE	: NAS Key West, Fly	ring Club	
DEPTH FT.	LABORAT SAMPLE	SAMPLE SAMPLE	RECOVERY	HEADSPACE (ppm)	SOIL/ROCK AND C	DESCRIPT	IION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	WELL DATA
	-			25	SAND: silty, calcareous, d coarse-grained. <i>Petroleu</i>		to black, fine- to		SM		
	-			90	SAND: silty, clayey, calca coarse-grained. <i>Petroleu</i>		rk brown, fine− to				\$
5—	-			370	LIMESTONE: light brown to Strong petroleum odor.	o dark bro	own, some silt.				
10											
	_										
15—		l 1			l Page	= 1 of F	C-19 ABB E	I ENVIRO	NMEN	TAL SERVICES.	INC.

TITLE: NAS Key West,	Flying Club		L06 o	f WELL: KYW-A127-2	20	BOR	ING NO. N/A	
CLIENT: SOUTHNAVFA	CENGCOM					PRO	JECT NO: 8508-30	
CONTRACTOR: Ground	water Prote	ction, Inc.		DATE STARTED: 1	0/16/93		COMPLTD: 10/16.	/93
METHOD: 4.25" HSA		CASE SIZE: 2 inch		SCREEN INT.: 2	- 12 FT.	PROT	ECTION LEVEL: D	
TOC ELEV.: 10.35 FT.		MONITOR INST.: 0VA	Α	TOT DPTH: 12FT.		DPTH	I TO ♀ 3.52 FT.	
LOGGED BY: J. Koch		WELL DEVELOPMENT	DATE: 10	/16/93		SITE	: NAS Key West, Fly	ring Club
DEP TE LE	RECOVERY HEADSPACE (DDM)	SOIL/ROCK AND C	K DESCRIPT COMMENTS	TION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOWS/6-IN	, WELL DATA
5	9 2900	SAND: clayey, calcareous fine- to coarse- grained SAND: clayey, calcareous to coarse grained with gr	l. <i>No odor</i> s, light bro ravel. <i>Slig</i>	wn to white, fine-		SC GC		
15—	1	PAGE	Elof FC	C-20 ABB E	I I	MEN.	TAL SERVICES.	INC.

APPENDIX C TIDAL INFLUENCE STUDY

TIDAL INFLUENCE STUDY

Background. The tide is the periodic rise and fall of the earth's water resulting from gravitational interactions between the sun, moon, and earth. There are generally two high and two low waters in a day. Tides follow the Moon more closely than they do the sun, and the lunar or tidal day is about 50 minutes longer than the solar day. When the two high waters and two low waters of each tidal day are approximately equal in height, the tide is said to be semidiurnal. When there is a relatively large diurnal inequality in the high or low waters or both, the tide is said to be mixed. Finally, when there is only one high water and one low water in each tidal day, the tide is said to be diurnal. When water is falling or moving away from a shoreline, the tide is said to be an ebb tide. Under the conditions when water is rising the tide is said to be a flood tide. The time and heights of the rising and falling of the tide can be predicted based on our knowledge of these gravitational interactions. Daily tide predictions in the United States are available and are based upon analyses of tidal observations for periods of at least 1 year. Extreme meteorological conditions are excluded from the analyses and predictions, therefore, the predicted tidal heights are those expected under average weather conditions. Prolonged onshore winds or a low barometric pressure can produce higher tidal levels than predicted. addition, prolonged offshore winds or a high barometric pressure can produce lower tidal levels than predicted.

Variations in the coastline and in the coastal bathymetry (channels, shoals, etc.) can also make a difference in the times that the tidal wave hits different points along the same coastline.

Exclusive of weather conditions, the astronomical tide is also subject to range variations. Decreased ranges may be expected near the times when the moon is in apogee (farthest from the earth) or in quadrature (angular separation of the moon and sun from the earth is 90 degrees; also called neap tides). Increased ranges may be expected when the moon is in perigee (nearest to earth in its orbit) or in a new or full position (spring tides). A larger diurnal range may also result when the moon is in its maximum declination (tropic tides). The actual tidal range will depend upon the extent to which combinations of these positions reinforce or detract from one another. These range variations based on astronomical conditions are included in the daily tide predictions. predicted tide tables for the coastal United States are published by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration. tide tables predict the high and low water heights based on Mean Lower Low Water (MLLW) datum and times based on a referred meridian. The tidal datum MLLW is an arithmetic mean of the lower low water heights of a mixed tide observed over a specific 19-year Metonic cycle (the national Tidal Datum Epoch). Only the lower low water of each pair of low waters, or the only low water of a tidal day is included in the mean.

Groundwater aquifers that are in hydraulic connection with surface water bodies such as rivers, lakes, oceans, etc., are influenced by fluctuations of the water bodies. These fluctuations may be the result of tidal influences, flooding, rainfall, or the influence of man made control structures such as dams and locks. During high surface water conditions the aquifer may be recharged, whereas, during low surface water conditions the aquifer will usually discharge into the

surface water body. In a groundwater aquifer, the effects of surface water fluctuations will diminish with distance from the source (river, ocean, etc.).

NAS Key West is located on Boca Chica Key. The Lower Keys, including Boca Chica Key, are overlain by an oolitic member of the Pleistocene Miami Limestone, except in those areas where fill material has been imported. The surficial aquifer is contained within this oolitic member. Groundwater at NAS Key West on Boca Chica Key is encountered from 1 to 5 feet bls. Because of the high hydraulic conductivity of this oolite, the groundwater on the entire Key is suspected of experiencing tidal fluctuations, particularly at near extreme high and low tide conditions.

<u>Tidal Study Methodologies</u>. The tidal study was conducted at the Flying Club site from 1800 hours on November 30, 1993 to 0730 hours on December 2, 1993. Initially, water levels were collected from a temporary surface water gauge located at the Jet Engine Test Cell and from monitoring wells MW-8, MW-6, and MW-4. During the study, water levels were recorded from these stations every 15 minutes using a Hermit^M Data Logger and pressure transducer probes.

The monitoring well stations were surveyed to a reference benchmark located at MW-11 that has an arbitrarily assigned elevation of 10.00 feet.

The water level data from the monitoring wells were then compared to the predicted tide levels in the Key West area.

<u>Tidal Study Results</u>. The study period was scheduled to take place within 3 days of a full Moon (November 29, 1993) so that near maximum water level fluctuations, as a result of the tide, could be observed. The actual study was conducted from 1645 hours on November 30, 1993, to 0700 hours on December 2, 1993. Comparisons of the water level fluctuations in the monitoring wells to the predicted tide levels in the Key West area indicated that local bathymetry and the location of the site (convergence of the Atlantic Ocean and the Gulf of Mexico) greatly impact the arrival time and levels of the tides in the area.

Predicted tide arrivals and levels at the Key West station, located at Truman Annex on the west side of Key West, are compared to the Boca Chica Channel Bridge station, located approximately 6.5 miles east of the Key West station. These data show the tide occurs 1.5 hours later at the Boca Chica Channel Bridge and has an approximate 60 percent reduction in tidal levels. The Key West station is located approximately 8.5 miles west of the study site, whereas the Boca Chica Channel Bridge station is only 2 miles west of the study site. For tidal stations closer to the study site, the delay in the predicted tide arrivals and levels are even more pronounced. Data from these stations are compared to the Flying Club site and are presented in Table C-1.

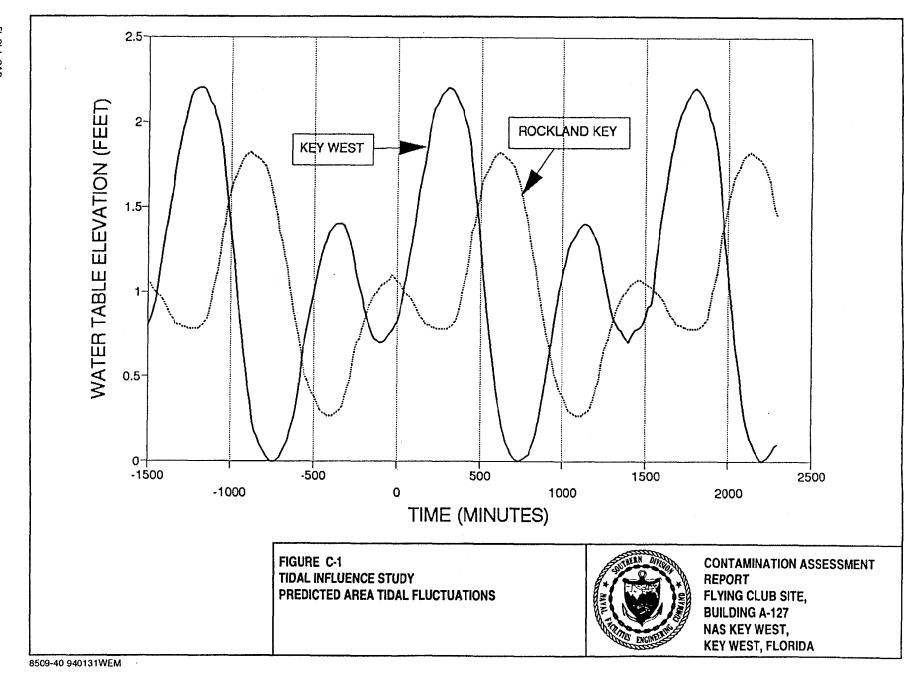
The closest predicted tide station to the study site (Rockland Key Channel Bridge) was used in comparing the monitoring well data to the predicted tides. The information in Table C-1 shows the high and low tides at Rockland Key occur between 5 and 6 hours after they occur at the western end of Key West. The variation in water levels during high and low tides is 0.76 to 0.88 times those of Key West. The comparison of the tidal fluctuations with time between the Rockland Key and the Key West stations is presented on Figure C-1. A comparison of the groundwater level fluctuations at the Flying Club site to the tidal fluctuations at Rockland Key is presented on Figure C-2.

Table C-1 Tidal Influence Study Tidal Differences Between Stations in the Key West Area

Contamination Assessment Report Flying Club Site, Building A-127 Naval Air Station Key West Boca Chica Field, Key West, Florida

	Differences]	
Place		High Water		w ter	High Water ¹	Low Water ¹	Distance from Flying Club Site	
	h	m	h	m	feet	feet		
Key West, Truman Annex	0	0	0	0	1.0	1.0	8.5 miles W.	
Boca Chica Channel Bridge	+1	23	+1	29	0.57	0.67	2 miles W.	
Boca Chica Key, Long Point	+3	54	+5	22	0.94	0.71	2 miles NW	
Rockland Key, Rockland Channel Bridge	+5	02	+6	06	0.76	0.88	1 mile NE	

¹ The water level values of the Key West station for high or low water must be multiplied by this number to obtain the correct tidal levels for the station.


Notes: h = hour.

m = minute.

W = west.

NW = northwest.

NE = northeast.

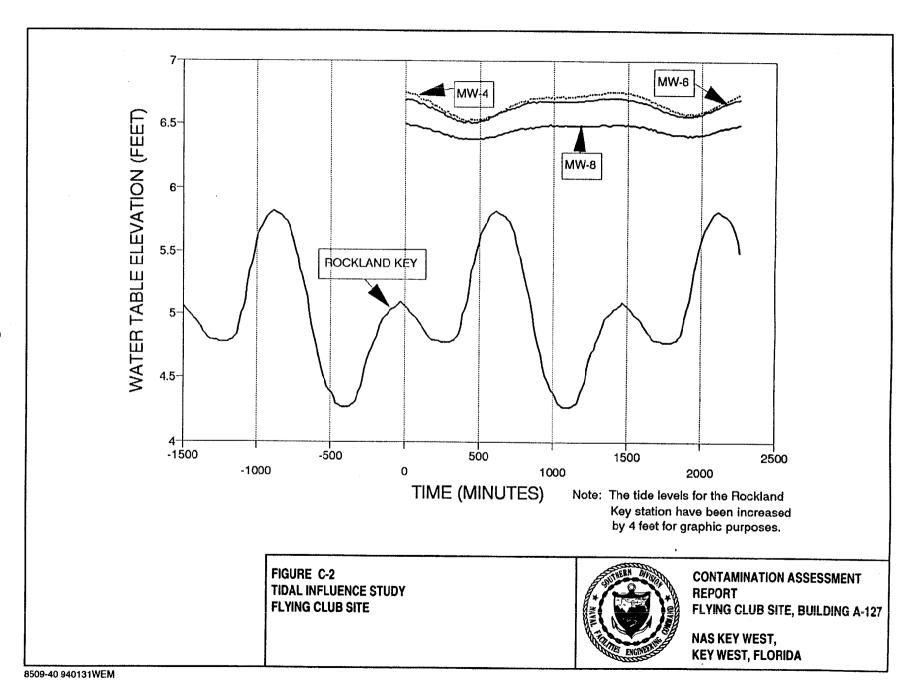


Figure C-2 shows maximum water level fluctuations at the site of approximately 0.22 foot in MW-4, 0.2 foot in MW-6, and 0.12 foot in MW-8.

With the groundwater fluctuations at the site showing a tidal pattern and because the site is located in the central section of Boca Chica Key, it can be inferred that all groundwater at Boca Chica Key is influenced by the tide, especially during extreme tidal events.

Although there is a fluctuation of approximately 0.2 foot in the groundwater at the site caused by the tide that will result in a temporary change in the water table gradient, these fluctuations are not expected to cause any noticeable horizontal migration of the contaminant plume. The duration of these fluctuations and their resulting gradient changes in relationship to the hydraulic conductivity of the material at the site does not suggest any significant lateral movement of water at the site. The vertical movement of the groundwater as a result of tidal fluctuations will cause a spreading of contamination in the soil directly above and below the groundwater table. However, this would be expected anyway as a result of contaminant volatilization and dissolved component migration.

APPENDIX D AQUIFER PARAMETER CALCULATIONS

Aquifer Parameter Calculations

Hydraulic gradient

Water table elevations were plotted on a map of the site. A water table contour map was drawn with flow lines (depicting groundwater flow direction) perpendicular to the groundwater elevation contours. The groundwater hydraulic gradient was calculated by subtracting the differences in groundwater elevation (in feet) between two points on the map and dividing the elevation difference by the distance between the two points to obtain a resulting gradient in feet per foot (ft/ft). Water elevation data collected on October 18 and December 4, 1993, were used to calculate hydraulic gradients at the site. For each date, three traverses were made perpendicular to equipotential contour lines to calculate an average site hydraulic gradient. For each traverse, the hydraulic gradient was calculated as follows:

$$i = (h_1 - h_2) / d$$
 (1)

where

i = hydraulic gradient (ft/ft),

 h_1 = water table elevation, upgradient (feet),

h₂ = water table elevation, downgradient (feet), and

d = horizontal distance (feet) between h_1 and h_2 along a flow line.

Hydraulic gradients calculated in this manner varied from 1.04×10^{-3} ft/ft to 2.04×10^{-3} ft/ft. The average hydraulic gradient at the site was calculated to be 1.52×10^{-3} ft/ft.

Hydraulic conductivity

Hydraulic conductivity (K) from slug test data was calculated following the methods of Bouwer and Rice (1976) and Bouwer (1989) for partially penetrating wells screened in unconfined aquifers. The following well information was needed to assess the hydraulic conductivity:

- radius of well casing (r_c),
- $r_w = radius$ of borehole (r_c plus radius of the sand pack surrounding the well screen),
- length of screened interval below the water table (L_e),
- effective well radius (r_e) ,
- depth of well below the water table (L,),
- depth to confining unit or bottom of aquifer below the static water table (H), and
- plot of time versus the logarithm of y, where y is the difference between the static water level outside the well and the water level inside the well.

Figure D-1 is a well diagram depicting most of the aquifer and well parameters. Calculations were made assuming that $L_{\omega} < H$. K was calculated as follows:

$$K = \left[R_c^2 \ln\left(\frac{r_\theta}{r_w}\right) - 2L_\theta\right] \left[\frac{1}{t} \ln\left(\frac{y_o}{y_t}\right)\right] \tag{2}$$

where

 $y_0 = y$ at time zero, and $y_t = y$ at time t.

The effective well radius, r_e , and the term $[(1/t)\ln(y_0/y_t)]$ were derived by using the computer program AQTESOLV^M (Geraghty & Miller, Inc., 1989). This computer program follows procedures and assumptions outlined by Bouwer (1989).

Slug test graphs are attached at the end of this appendix. Values of y were calculated for a particular time, t, and plotted on the graph. The computer program selects a "best-fit" line through the data points by linear regression along a "straight-line" portion of the graph. The slope of the "best-fit" line is used to calculate the hydraulic conductivity, K.

Three slug tests each were performed inside monitoring wells MW-4 and MW-6. K is reported in feet per minute (ft/min) on the slug test graphs, and was recalculated to feet per day (ft/day). K was found to vary from 4.3×10^{-1} ft/day to 1.36 ft/day with an average K of 9.5×10^{-1} ft/day.

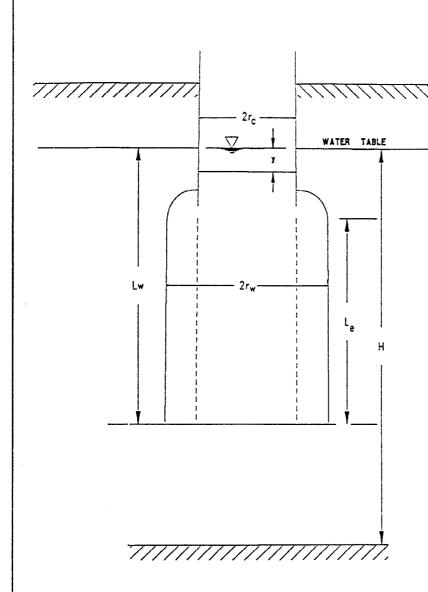
Average pore water velocity

Estimates of average pore water velocity were obtained using the following formula:

$$V = (K*I)/n \tag{3}$$

where

V - seepage velocity in ft/day,


K = hydraulic conductivity in ft/day,

i = hydraulic gradient, and

n = estimated porosity.

Assuming an estimated porosity of 30% for weathered to oolitic limestone (Davis and Dewiest, 1966), an average hydraulic gradient of 1.52×10^{-3} ft/ft, and an average hydraulic conductivity of 9.4×10^{-1} ft/day, the average pore water velocity is calculated as follows:

 $V = (9.4x10^{-1} \text{ ft/day} * 1.52x10^{-3} \text{ ft/ft}) / 0.30$ $V = 4.8x10^{-3} \text{ ft/day}$

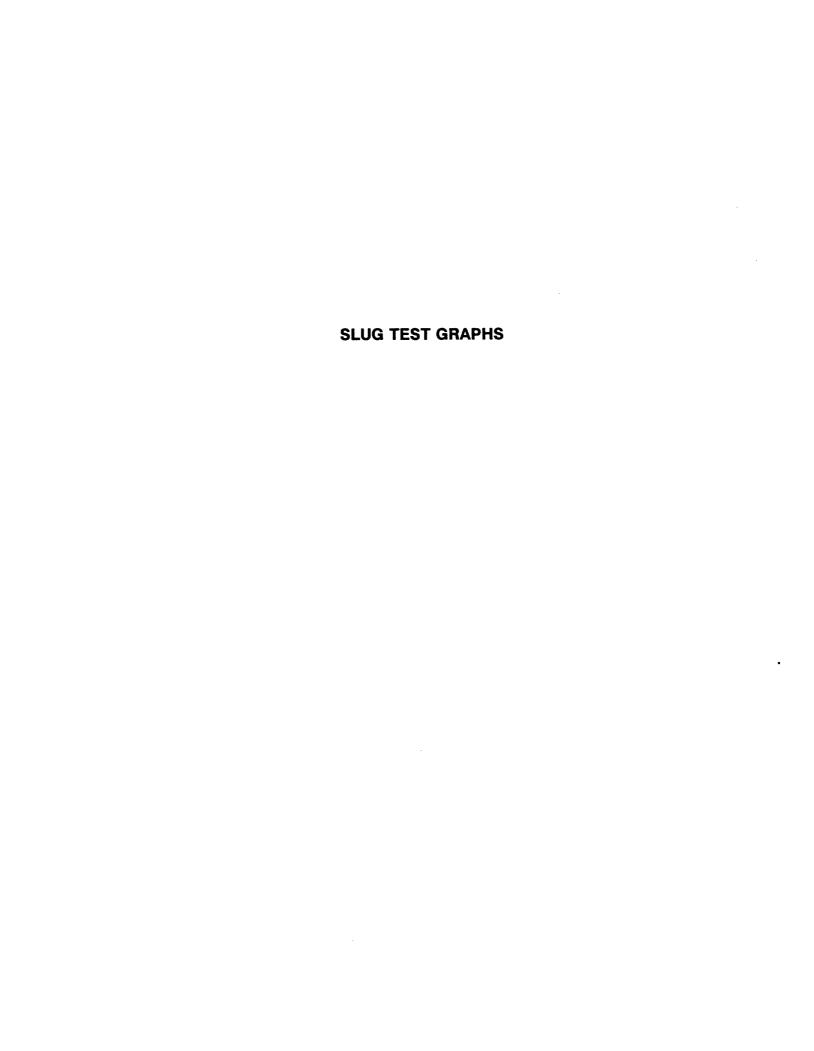
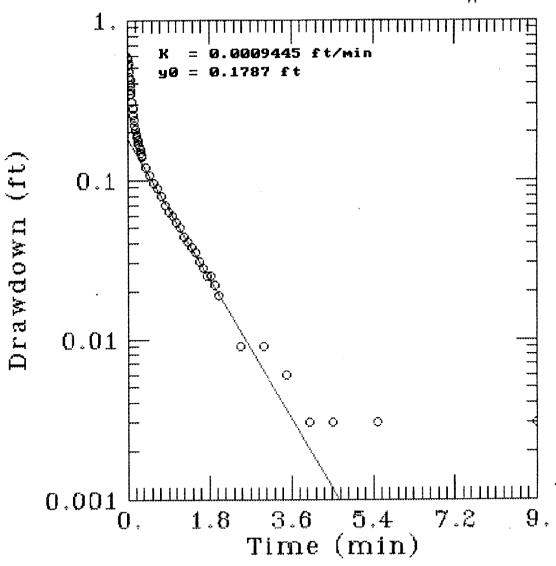
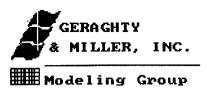

- r_c Radius of well
- r_w- Radius of well + total thickness of the sand/gravel pack
- Le Length of screened interval below the water table
- Lw Depth of well below water table
- H Depth to confining unit below the water table
- y Difference between static water level outside well and water level inside well

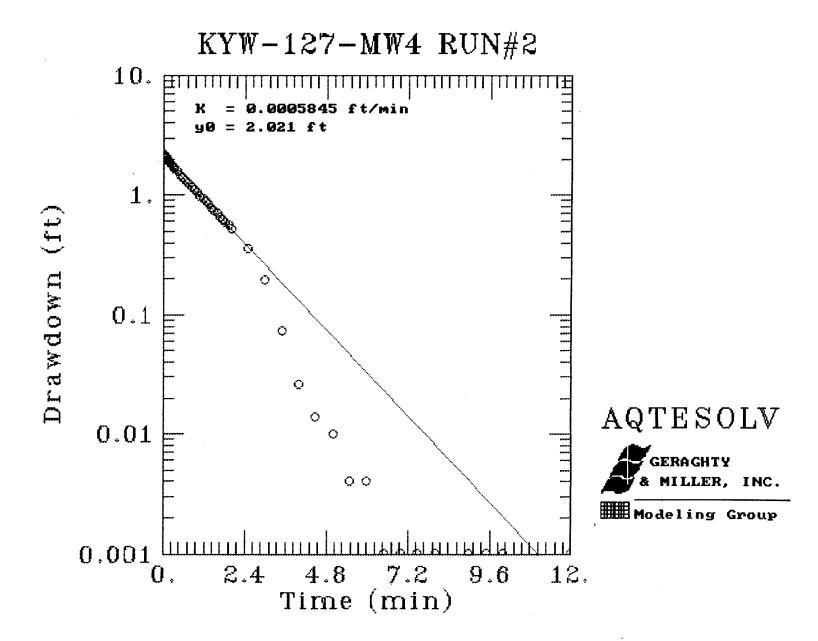
FIGURE D-1 DEFINITIONS OF SLUG TEST PARAMETERS (From Bouwer, 1989)



CONTAMINATION ASSESSMENT REPORT FLYING CLUB SITE, BUILDING A-127 NAS KEY WEST, KEY WEST, FLORIDA


8509-40 940131WEM

KYW-127-MW4 RUN#1



AQTESOLV

AQTESOLV RESULTS Version 1.10
01/26/94 09:41:0
TEST DESCRIPTION
Data set A:127MW4R1.set Data set title KYW-127-MW4 RUN#1
Knowns and Constants: 52 No. of data points
ANALYTICAL METHOD
Bouwer-Rice (Unconfined Aquifer Slug Test)
RESULTS FROM STATISTICAL CURVE MATCHING
STATISTICAL MATCH PARAMETER ESTIMATES
Estimate Std. Error K = 4.1886E-003 +/- 2.5288E-004 y0 = 5.7347E-001 +/- 1.7655E-002
ANALYSIS OF MODEL RESIDUALS
residual = calculated - observed weighted residual = residual * weight
Weighted Residual Statistics:

Residual mean..... 0.01597 Residual standard deviation..... 0.03629

AQTESOLV RESULTS Version 1.10

01/26/94 12:04:0

TEST DESCRIPTION

Data set A:127MW4R2.SET
Data set title.... KYW-127-MW4 RUN#2

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.967

ANALYTICAL METHOD

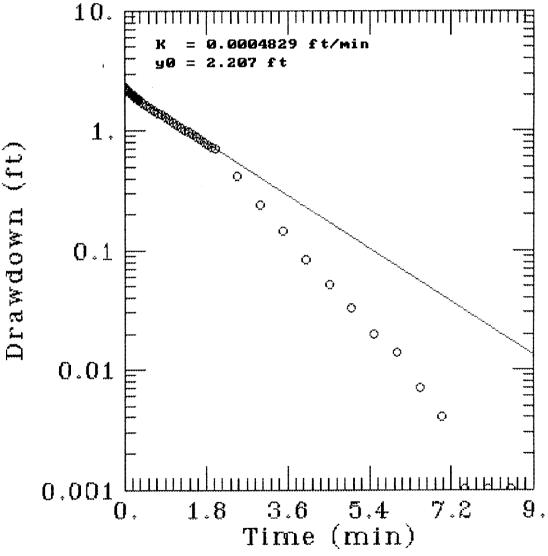
Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

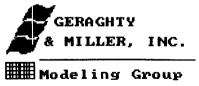
VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 7.4795E-004


y0 = 2.1809E + 000

TYPE CURVE DATA


K = 5.84489E-004y0 = 2.02064E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	2.021E+000	1.200E+001	5.132E-004		

KYW-127-MW4 RUN#3

AQTESOLV

AQTESOLV RESULTS Version 1.10

12:44:4

01/26/94

TEST DESCRIPTION

Data set A:127MW4R3.SET
Data set title.... KYW-127-MW4 RUN#3

Knowns and Constants:

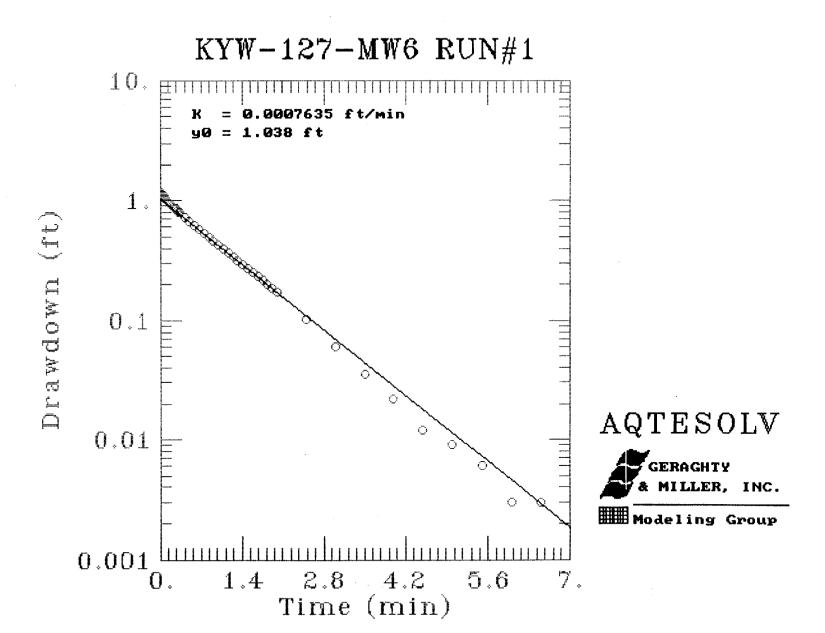
A, B, C..... 0.000, 0.000, 1.967

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES


Estimate

K = 7.8092E-004y0 = 2.1809E+000

TYPE CURVE DATA

K = 4.82879E-004y0 = 2.20746E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0 000E+000	2 207E+000	9 000E+000	1 307E-002		

AQTESOLV RESULTS Version 1.10

01/26/94

14:28:40

TEST DESCRIPTION

Data set..... A:127MW6R1.SET Data set title.... KYW-127-MW6 RUN#1

Knowns and Constants:

No. of data points..... 54 Radius of well casing..... 0.083 Radius of well..... 0.334 Aguifer saturated thickness..... 8.29 Well screen length..... 10 Static height of water in well..... 8.29

A, B, C..... 0.000, 0.000, 1.967

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

8.1230E-004 v0 =0.0000E+000

TYPE CURVE DATA

K = 7.63452E-004y0 = 1.03850E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	1.038E+000	7.000E+000	1.845E-003		

KYW-127-MW6 RUN#2 0.10.01 AQTESOLV Modeling Group 0.0013.2 $8 \cdot 0$ 2.4

Time (min)

AQTESOLV RESULTS Version 1.10

01/26/94 14:51:1

TEST DESCRIPTION

Data set..... A:127MW6R2.SET
Data set title.... KYW-127-MW6 RUN#2

Knowns and Constants:

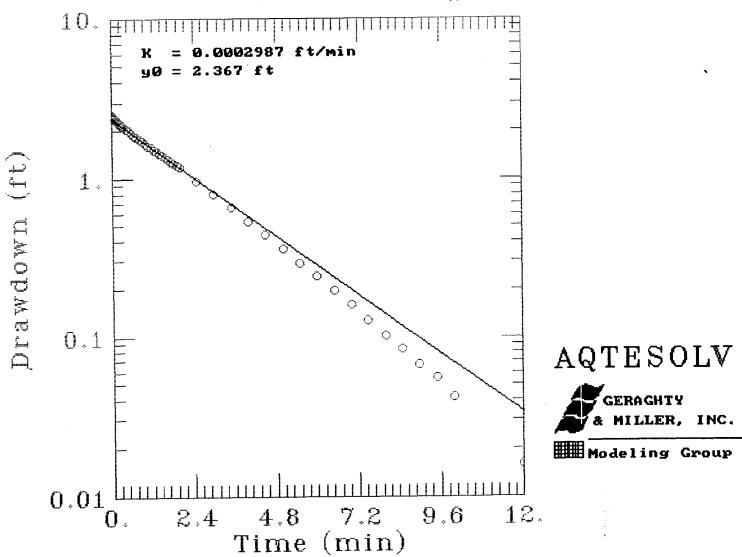
ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate


K = 1.3017E-003y0 = -7.7451E+304

TYPE CURVE DATA

K = 9.04312E-004y0 = 1.24902E-001

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	1.249E-001	4.000E+000	1.717E-003		

KYW-127-MW6 RUN#3

AQTESOLV RESULTS Version 1.10

01/26/94

15:01:23

TEST DESCRIPTION

Data set A:127MW6R3.SET
Data set title.... KYW-127-MW6 RUN#3

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.967

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate C = 3.3873E-004

y0 = -7.7451E+304

TYPE CURVE DATA

K = 2.98722E-004y0 = 2.36728E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	2.367E+000	1.200E+001	3.383E-002		

APPENDIX E GROUNDWATER ANALYTICAL DATA

5910 Breckenridge Parkway. Suite H 813-621-0784 Tampa, FL 33610

FAX 813-623-6021

ANALYTICAL REPORT

BOCA CHICA FLYING CLUB 21 OCTOBER 1993

Presented to:

ROGER DURHAM

ABB ENVIRONMENTAL SERVICES, INC.

ENSECO-WADSWORTH/ALERT LABORATORIES

Chris Amstutz Project Manager

Érubbs Randall d.

Laboratory Director - Florida

November 19, 1993

Laboratory ID

Narrative

3J2201-1,2,3,6,17,18,20,21 Due to suspected matrix interference. surrogate recoveries for trifluorotoluene for the volatile organic compound analyses for these samples were outside established laboratory control limits. A second sample preparation and analysis confirmed the interferences and the original data is presented in this report.

3J2201-13,14,15,17,23

The concurrently analyzed laboratory blank associated with the volatile organic analysis of these samples contained methylene chloride greater than five times the reported detection limit. Methylene chloride is a common laboratory contaminant and its presence in the samples should be considered suspect. A second sample preparation and analysis yielded no presence of methylene chloride in the associated laboratory blank. However, these analyses were performed after the EPA recommended holding time had been exceeded. Both sets of data are included in this report.

3J2201-20MS & MSD

The relative percent difference (RPD) for the semi-volatile organic compound analysis for the matrix spike/matrix duplicate (MS/MSD) exceeded laboratory established quality control criteria. An intial analysis of the MS/MSD provided acceptable RPDs. However, these samples were analyzed after the method tune time Both sets of data are expired. included in this report.

ENSECO-WADSWORTH/ALERT Laboratories

Division of Coming Lab Servies, Inc.

5910 Breckenridge Parkway, Suite H 813-621-0784 Tampa, FL 33610 FAX 813-623-6021 January 20, 1994

Roger Durham 2590 Executive Center Circle East Tallahassee, FL 32301

Re: Boca Chica Flying Club

Dear Roger,

As per your request the following data is provided. The 1,2-dichloroethene results for these samples was previously reported as "total". In some instances the "total" result may not equal the "cis" and "trans" due to rounding of results prior to reporting.

ABB ID	Enseco ID	Cis-1,2-DCE ppb	Trans-1,2-DCE ppb	Total-1,2-DCE ppb
MW-14D	J2201-14	14	ND	14
MW-15D	J2201-15	38	2	39
MW-18	J2201-18	2	3	5
MW-19	J2201-19	5	12	16

In addition, undiluted results are not available for samples MW-1, MW-2, MW-4, and MW-6. Each of these samples was screened prior to analysis. The screen results were used to determine the proper dilution needed to ensure that detected analytes were within the instrument calibration range.

If you need further assistance please do not hesitate to contact me.

chi anstut

Chris Amstutz Project Manager

INVOLVEMENT

This report summarizes the analytical results of the Boca Chica Flying Club site submitted by ABB Environmental Services, Inc. to Enseco-Wadsworth/ALERT Laboratories who provided independent, analytical services for this project under the direction of Roger Durham. The samples were accepted into Wadsworth's Florida facility on 21 October 1993, in accordance with documented sample acceptance procedures. The associated analytical methods and sample results are outlined sequentially in this report.

Analytical results included in this report have been reviewed for compliance with the Laboratory QA/QC Plan as summarized in the Quality Control Section at the rear of the report. Sample custody documentation describing the number of samples and sample matrices is also included. Any qualifications and/or non-compliant items have been noted below.

Laboratory ID

3J2201-14

<u>Narrative</u>

Due to suspected purging inefficiency, the internal standard response for the volatile organic analysis of this sample failed to meet quality control criteria. A second sample preparation and analysis yielded acceptable results. However, this analysis was performed after the EPA recommended holding time had been exceeded. Both sets of data are included in this report.

3J2201

Due to the presence of bromoform in these samples, the surrogate for the ethylene dibromide analyses exceeded established laboratory control limits.

3J2201

Due to limited sample volume, a matrix spike/matrix spike duplicate for Total Petroleum Hydrocarbons was not performed on these samples.

ANALYTICAL METHODS

Wadsworth/ALERT Laboratories utilizes only USEPA approved analytical methods are instrumentation. The analytical methods utilized for the analysis of the samples are listed below.

PARAMETER METHOD

ORGANICS

Volatile Organics ** EPA Method 601/2
Ethylene Dibromide ** EPA Method 601 Mod.
Polynuclear Aromatic Hydrocarbons ** EPA Method 625

METALS

Lead ** EPA Method 239.2

MISCELLANEOUS

Tot. Rec. Petroleum Hydrocarbons ** EPA Method 418.1
Total Dissolved Solids ** EPA Method 160.1

NOTE: ** Indicates usage of this method to obtain results for the report.

(D) Indicates draft version of this method was used

EPA Methods Methods for Chemical Analysis of Water and Wastes, USEPA, 600/4

79-020, March, 1983. July, 1982

Drinking Waters USEPA, 600/4-88/039, December, 1988.

Std. Methods Standard Methods for the Examination of Water and Waste-water

APHA, 16th edition, 1985.

USEPA Methods From 40CFR Part 136, published in Federal Register on October

26, 1984.

SW846 Methods Test Methods for Evaluating Solid Waste Physical/Cherine Methods, 3rd Edition, USEPA, 1986.

Methods, 3rd Edition, USEPA, 1986.

ASTM Methods American Society for Testing and Materials.

NIOSH Method NIOSH Manual of Analytical Methods, National Institute for

Occupational Safety and Health, 2nd Edition, April 1977.

5910 Breckenridge Parkway, Suite H 813-621-0784 Tampa FL 33610 FAX 813-623-6021

January 5, 1994

Mr. John McVoy ABB Environmental Services, Inc. 2590 Executive Circle East Tallahassee, Florida 32301

Dear John:

I have reviewed the analytical report submitted by Enseco for the Boca Chica Flying Club site dated November 19, 1993. I offer the following comments regarding your concerns and data usability.

1. Presence of Dichloromethane - 601/602 Analyses

Major facility modifications have significantly lowered the occurrences of DCM in volatile blanks. However, random occurrences still persist. Enseco's policy, as outlined in our facility QAP, is to recognize (as EPA does) that DCM is a common laboratory background contaminant, and may be present at up to five times (5x) the reporting limit. Should DCM exceed 5x in the laboratory blank, corrective action should occur which includes reanalysis of the samples associated with that blank. In this case, reanalyses yielded similar results to the original, even though they were performed past hold time. For data qualification purposes, original (in hold-time) data should be used for all 601/2 compounds except DCM. For DCM, both sets of reported data for this compound should be evaluated and qualified per the EPA functional guidelines for organics analyses. EPA and DEP have a history of allowing use of data from reanalyses performed past hold-time for qualitative and confirmational purposes. I did not see any sample data where detection limits for other target analytes were compromised by the presence of DCM.

2. Surrogates Outside Control Criteria - 601/2 Analyses

A consistent matrix interference effect (i.e. coelution) was observed during the 601/2 analyses for several samples, as outlined in the case narrative. Enseco policy, per the facility QAP requires reanalysis in this case to confirm that a sample matrix effect was indeed present, and that there was no system or instrument problems. Reanalysis was performed to confirm the matrix effect and the original results. The final reported data should be interpreted accordingly, with respect to the confirmed presence of interferents with the analysis of aromatic volatiles (602 compounds).

ABB Environmental Services, Inc. Page 2
January 5, 1994

3. Bromoform Surrogate Recoveries for EDB Analyses

EDB analyses were performed by DEP method 601-modified as required in FAC 17-770. Due to compound similarity, Enseco uses Bromoform as a surrogate to track system performance on an individual sample basis. Every sample (except the equipment blank) showed matrix interference - either Bromoform was present, or a coeluting interferent was present. Due to the sample interference, elevated recoveries occurred. All 22 affected samples were reanalyzed to confirm the sample effect. EDB data can be qualified as "ND" at the reporting limit despite the high surrogate recovery. Only in cases of low or no surrogate recovery does the reporting limit typically come into question. The laboratory followed policies in its QAP to confirm a sample matrix effect.

4. Internal Standard Response Problem (601/2) for 3J2201-14

The low internal standard response for this sample was observed and noted by the laboratory. Per the QAP, the sample was reanalyzed to find out whether an instrument malfunction or sample interference had occurred. The reanalysis showed an instrument problem occurred during the first analysis. Both sets of data were reported. The difference in concentrations observed is due to the difference in internal standard response. The reanalysis, which met internal standard criteria, would be considered quantitative data, had it not been performed outside of hold-time. In this case, final sample data should be interpreted as qualitative. A resampling and reanalysis could be used to confirm this data.

5. Matrix Spike Duplicates for PAH Analyses - 3J2201-1 and -20

Two matrix spike duplicates were performed for this batch of twenty-three samples. The MS/MSD performed on 3J2201-1 met all criteria as specified in our QAP - i.e. the duplicate data must be within RPD/precision limits for control compounds. The narrative for 3J220-20MS and MSD was incorrect in stating that an original analysis, out of tune-time, met all RPD criteria. In fact, this analysis also showed the RPD to be above control criteria for Naphthalene. Three analyses were attempted for the MS/MSD, each resulting in high precision for one or more control compound. Enseco policy defines Matrix Spike Duplicates as sample-specific quality control. Due to the unavailability of additional sample for 3J2201-20, another Matrix Spike Duplicate was not extracted. For data qualification purposes, 3J2201-20 were "ND".

ABB Environmental Services, Inc.

Page 3 January 5, 1994

Although it is unclear whether sample matrix effects contributed to the high precision values for the MS/MSD (due to lack of sample available for reextract), the MS/MSD recovery results do allow qualification of non-detected analytes in the sample itself. All spiked analytes were recovered above sixty percent (60%). (Note: The MS/MSD results for 3J2201-1 were inadvertently omitted from the original report, and are attached here.)

6. LCS Results Associated With 601/602 Analyses

The report does not contain batch numbers which allow easy associated of QC and sample data other than by date. (This has been rectified over the past two months as we convert to a new LIMS.) The attached pages outline the dates and times of samples and associated QC for your use. I've included analysis time so that the analytical sequence is evident.

In summary, I've tried to outline the corrective action procedures employed by the laboratory when anomalies arose during this project. Although a two-page case narrative outlining multiple anomalies and reanalyses may seem daunting, it also serves inform the end data user and to demonstrate a consistent and systematic approach to assessing sample and QC data anomalies. Instances such as reanalyses due to surrogate problems with the 601/602 and EDB analyses are common examples of additional information supplied by the lab to allow proper interpretation of the data. In many cases (as you are aware), sample holding time restrictions do not allow for corrective action and confirmational analyses to take place within hold-time. In these cases, all data is reported to allow decisions on data usability to be made while assessing all available information. As I mentioned, it has been our experience that both DEP and EPA typically recognize confirmational or qualitative information from reanalyses performed after holding time has expired in cases where both analyses produce comparable data.

Please call me at (813) 621-0784 if you have any questions or wish to further discuss the content and usability of this data. Should we agree, in fact, that portions of this data prove to not meet QAP or regulatory requirements for this project, I would be happy to offer assistance in expediting any necessary reanalysis required due to recollection of samples.

Sincerely,

Enseco Laboratories

Randall C. Grubbs
Laboratory Director

315\BR\9\ABBMCVOY.LTR

LAB # 3J2201-1 MATRIX: WATER

DATE RECEIVED: 10/21/5 DATE EXTRACTED: NF DATE ANALYZED: 11/2, 3

SAMPLE ID: MW-1

BOCA CHICA FLYING CLUB

VOLATILE ORGANICS METHOD 601/602 - GC CERTIFICATION #: E84059

HRS84297

Benzene	13	1,2-Dichloroethane	ND
Bromodichloromethane	ND	1,1-Dichloroethene	ND
Bromoform	ND	1,2-Dichloroethene (Total)	ND
Bromomethane	ND	1,2-Dichloropropane	ND
Carbon tetrachloride	ND	cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	ND
Chloroethane	ND	Ethylbenzene	130
2-Chloroethylvinyl ether	ND	Methylene chloride	16 B
Chloroform	ND	1,1,2,2-Tetrachloroethane	ND
Chloromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	12
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride	ND
•		Xylenes	24
		Methyl-tert-butylether	25

(None Detected, lower detectable limit = (None Detected, lower detectable limit = 5 NOTE: ND ug/L) as rec'd ug/L) as rec'd ND* (Not Analyzed)

ACCEPTABLE LIMITS SURROGATE RECOVERY: (78-122) Bromochloromethane (HECD) 87 633 (73-131)Trifluorotoluene (PID)

ಶ #: 3J2201-1 MATRIX: WATER

DATE RECEIVED: 10/21/93 DATE EXTRACTED: NA

DATE ANALYZED: 10/28/93

SAMPLE ID: MW-1

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

NOTE: ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY: ACCEPTABLE LIMITS

WATER SOLID

ૠ

omoform (ECD)

(41-152) (41-152)

176

LAB #: 3J2201-1 MATRIX: WATER

DATE RECEIVED: 10/21 DATE EXTRACTED: 10/26 3

DATE ANALYZED: 11/5/93

SAMPLE ID: MW-1

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

POLYNUCLEAR AROMATIC HYDROCARBONS

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene Acenaphthylene	ND ND
Anthracene	ND
Benzo(a) anthracene	ND
Benzo(a)pyrene	5
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	12
Benzo(k) fluoranthene	ND
Chrysene	ND
Dibenz (a, h) anthracene	9
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	9
1-Methylnaphthalene	18
2-Methylnaphthalene	48
Naphthalene	120
Phenanthrene	ND
Pyrene	ND

(None Detected, lower detectable limit = 5 (None Detected, lower detectable limit = NOTE: ND ND*

(Not Analyzed)

ug/L) as rec'd ug/L) as rec'd

SURROGATE RECOVERY:	8	ACCEPTABLE LIMITS WATER SOLID
Nitrobenzene-d5	77	(22-135) (10-155)
Fluorobiphenyl	78	(34-140) (12-153)
Terphenyl-d14	45	(10-132) (13-140)

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

3 #: 3J2201-1 MATRIX : WATER

SAMPLE ID : MW-1 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION RESULT LIMIT	
Lead	11/ 3/93	9	5	ug/

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/9

LAB #: 3J2201-1 MATRIX : WATER

SAMPLE ID : MW-1 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 1/93	3	1 1	mg/L

B # 3J2201-2 MATRIX: WATER

SAMPLE ID: MW-2 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

DATE EXTRACTED:

DATE RECEIVED: 10/21/93

DATE ANALYZED: 11/2/93

HRS84297

NA

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene	150	1,2-Dichloroethane	ND
Bromodichloromethane	ND	1,1-Dichloroethene	ND
Bromoform	ND	1,2-Dichloroethene (Total)	
Bromomethane	ND	1,2-Dichloropropane	ND
Carbon tetrachloride	ND	cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	ND
Chloroethane	ND	Ethylbenzene	7
2-Chloroethylvinyl ether	ND	Methylene chloride	11 B
Chloroform	ND	1,1,2,2-Tetrachloroethane	ND
howard .			
loromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	10
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride	ND
		Xylenes	20
		Methyl-tert-butylether	ND

NOTE:	ND	(None Detected,	lower detectable	limit =	5	ug/L) as rec'd
	ND*	(None Detected,	lower detectable	limit =		ug/L) as rec'd
		(Not Analyzed)				

SURROGATE RECOVERY:	%	ACCEPTABLE LIMITS
nochloromethane (HECD)	85	(78-122)
fluorotoluene (PID)	188	(73-131)

LAB #: 3J2201-2 MATRIX: WATER

DATE RECEIVED: 10/21 DATE EXTRACTED:

NA

DATE ANALYZED: 10/28/93

SAMPLE ID: MW-2

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

(None Detected) as rec'd NOTE: ND

(Detected, but below quantitation limit; estimated value) J

SURROGATE RECOVERY: ACCEPTABLE LIMITS

WATER

SOLID

æ

Bromoform (ECD)

(41-152) (41-152)

286

ENSECO-WADSWORTH/ALERT Laboratories

APANY: ABB ENVIRONMENTAL SERVICES, INC.

AB #: 3J2201-2

SAMPLE ID: MW-2

DATE RECEIVED: 10/21/93 DATE EXTRACTED: 10/26/93 DATE ANALYZED: 10/30/93

MATRIX: WATER

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a) anthracene	ND
Benzo(a)pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
1,4600	
.benz (a,h) anthracene	ND
fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
a mount and and and	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND

NOTE:	ND	(None Detected,	lower detectable	limit = 5	ug/L) as rec'd
	ND*	(None Detected,	lower detectable	limit =	ug/L) as rec'd
		(Not Analyzed)			

SURROGATE RECOVERY:	%	ACCEPTABLE	LIMITS
gradient.		WATER	SOLID
.trobenzene-d5	64	(22-135)	(10-155)
.luorobiphenyl	65	(34-140)	(12-153)
Terphenyl-d14	47	(10-132)	(13-140)

LAB #: 3J2201-2 MATRIX : WATER

SAMPLE ID : MW-2 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

DATE RECEIVED: 10/21/9

METALS ANALYTICAL REPORT SELECTED LIST

HRS84297

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT		
Lead	11/ 3/93	ND	5	ug	

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

B #: 3J2201-2 MATRIX : WATER

SAMPLE ID : MW-2 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PREPARATION -DETECTION ANALYSIS DATE RESULT PARAMETER LIMIT Tot Recoverable Pet Hydrocarbons 11/ 1/93 2 1 mg/L

LAB # 3J2201-3 MATRIX: WATER

SAMPLE ID: MW-3 BOCA CHICA FLYING CLUB

DATE EXTRACTED: NA
DATE ANALYZED: 11/ 2/93

DATE RECEIVED: 10/21/

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene Bromodichloromethane Bromoform	1 ND ND	1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (Total)	ND ND
Bromomethane	ND	1,2-Dichloropropane	ND
Carbon tetrachloride	ND	cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	ND
Chloroethane	ND	Ethylbenzene	ND
2-Chloroethylvinyl ether	ND	Methylene chloride	3 B
Chloroform	ND	1,1,2,2-Tetrachloroethane	ND
Chloromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	ND
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride	ND
,		Xylenes	1
		Methyl-tert-butylether	ND

NOTE:	ND	(None Detected,	lower	detectable	limit	=	1	ug/L)	as	rec'd
	ND*	(None Detected,	lower	detectable	limit	2		ug/L)	as	rec'd
		(Not Analyzed)								

SURROGATE RECOVERY:	. %	ACCEPTABLE LIMITS
Bromochloromethane (HECD)	85	(78-122)
Trifluorotoluene (PID)	151	(73-131)

3 #: 3J2201-3

SAMPLE ID: MW-3

DATE RECEIVED:

DATE EXTRACTED:

10/21/93 NA DATE ANALYZED: 10/29/93

MATRIX: WATER

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

(None Detected) as rec'd NOTE: ND

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

(41-152) (41-152)

343

promoform (ECD)

LAB #: 3J2201-3 MATRIX: WATER DATE RECEIVED: 10/21
DATE EXTRACTED: 10/26,

DATE ANALYZED: 11/5/93

SAMPLE ID: MW-3

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a) anthracene	ND
Benzo(a)pyrene	ND
Benzo(b) fluoranthene	ND
Benzo (ghi) perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
Dibenz (a, h) anthracene	ND
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd

ND* (None Detected, lower detectable limit = ug/L) as rec'd

-- (Not Analyzed)

SURROGATE RECOVERY:	8	ACCEPTABLE	LIMITS
		WATER	SOLID
Nitrobenzene-d5	69	(22-135)	(10-155)
Fluorobiphenyl	76	(34-140)	(12-153)
Terphenyl-d14	63	(10-132)	(13-140)

ANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

. . #: 3J2201-3 MATRIX : WATER

SAMPLE ID : MW-3

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

	PREPARATION -		DETECTION
ELEMENT	ANALYSIS DATE	RESULT	LIMIT
Lead	11/ 3/93	ND	5 ug/I

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/9

LAB #: 3J2201-3 MATRIX : WATER

SAMPLE ID : MW-3 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 1/93	ND	1	mg/I

3J2201-4
MATRIX: WATER

DATE RECEIVED: 10/21/93
DATE EXTRACTED: NA
DATE ANALYZED: 11/ 2/93

SAMPLE ID: MW-4

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene Bromodichloromethane Bromoform	710 ND ND	1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (Total)	ND ND ND
Bromomethane Carbon tetrachloride Chlorobenzene	ND ND ND	1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND
Chloroethane 2-Chloroethylvinyl ether Chloroform	ND ND ND	Ethylbenzene Methylene chloride 1,1,2,2-Tetrachloroethane	ND ND
.oromethane Dibromochloromethane 1,2-Dichlorobenzene	ND ND ND	Tetrachloroethene Toluene 1,1,1-Trichloroethane	ND 130 ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND	1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane	ND ND ND
1,1-Dichloroethane	ND	Vinyl chloride Xylenes Methyl-tert-butylether	ND 460 11

NOTE: ND (None Detected, lower detectable limit = 10 ug/L) as rec'd ND* (None Detected, lower detectable limit = ug/L) as rec'd -- (Not Analyzed)

SURROGATE RECOVERY: % ACCEPTABLE LIMITS

Nochloromethane (HECD) 89 (78-122)

fluorotoluene (PID) 115 (73-131)

LAB #: 3J2201-4 MATRIX: WATER

DATE RECEIVED: 10/21 DATE EXTRACTED: NA

DATE ANALYZED: 10/29/93

SAMPLE ID: MW-4 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

PARAMETER

RESULT (ug/L)

DETECTION LIMIT

Ethylene dibromide

ND

0.02

NOTE: (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER

SOLID

%

Bromoform (ECD)

(41-152) (41-152)

306

B #: 3J2201-4 MATRIX: WATER DATE RECEIVED: 10/21/93
DATE EXTRACTED: 10/26/93
DATE ANALYZED: 11/ 5/93

SAMPLE ID: MW-4

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene Acenaphthylene Anthracene	ND ND
Benzo(a) anthracene Benzo(a) pyrene Benzo(b) fluoranthene	ND ND ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
penz (a, h) anthracene	ND
riuoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
	ND ND

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd

ND* (None Detected, lower detectable limit = ug/L) as rec'd

-- (Not Analyzed)

 SURROGATE RECOVERY:
 %
 ACCEPTABLE LIMITS

 water
 solid

 crobenzene-d5
 74
 (22-135) (10-155)

 luorobiphenyl
 76
 (34-140) (12-153)

 Terphenyl-d14
 40
 (10-132) (13-140)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/9

LAB #: 3J2201-4 MATRIX : WATER

SAMPLE ID : MW-4 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	DETECTION RESULT LIMIT		
Lead	11/ 3/93	46	10	ug/I

ANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

, #: 3J2201-4 MATRIX : WATER

SAMPLE ID : MW-4 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 1/93	1	1	mg/L

LAB # 3J2201-5 MATRIX: WATER DATE RECEIVED: 10/21/^ DATE EXTRACTED: NA DATE ANALYZED: 11/ 2/y3

SAMPLE ID: MW-5

1,1-Dichloroethane

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ND

ND

ND

VOLATILE ORGANICS METHOD 601/602 - GC

ND 1,2-Dichloroethane ND Benzene Bromodichloromethane ND 1,1-Dichloroethene ND Bromoform ND 1,2-Dichloroethene (Total) ND Bromomethane ND 1,2-Dichloropropane ND Carbon tetrachloride ND cis-1,3-Dichloropropene ND Chlorobenzene ND trans-1,3-Dichloropropene ND ND Chloroethane Ethylbenzene ND 2-Chloroethylvinyl ether ND Methylene chloride ND Chloroform 1,1,2,2-Tetrachloroethane ND ND Chloromethane Tetrachloroethene ND ND Dibromochloromethane ND Toluene ND 1,2-Dichlorobenzene ND 1,1,1-Trichloroethane ND ND 1,1,2-Trichloroethane ND 1,3-Dichlorobenzene 1,4-Dichlorobenzene ND Trichloroethene ND Dichlorodifluoromethane Trichlorofluoromethane ND ND

NOTE: ND (None Detected, lower detectable limit = 1 ug/L) as rec'd

ND* (None Detected, lower detectable limit = ug/L) as rec'd

-- (Not Analyzed)

Vinyl chloride

Methyl-tert-butylether

Xylenes

ND

#: 3J2201-5 MATRIX: WATER

DATE RECEIVED: 10/21/93 DATE EXTRACTED: NA

DATE ANALYZED: 10/29/93

SAMPLE ID: MW-5 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value) J

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

bromoform (ECD)

(41-152) (41-152)

783

LAB #: 3J2201-5 MATRIX: WATER DATE RECEIVED: 10/21
DATE EXTRACTED: 10/26

DATE ANALYZED: 11/5/93

SAMPLE ID: MW-5

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a) anthracene	ND
Benzo(a)pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	6
Benzo(k) fluoranthene	ND
Chrysene	ND
Dibenz (a, h) anthracene	5
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND
	-12

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd

ND* (None Detected, lower detectable limit = ug/L) as rec'd

-- (Not Analyzed)

SURROGATE RECOVERY:	*	ACCEPTABLE WATER	LIMITS SOLID
Nitrobenzene-d5	68		(10-155)
Fluorobiphenyl	77	(34-140)	(12-153)
Terphenyl-d14	40	(10-132)	(13-140)

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

B #: 3J2201-5 MATRIX : WATER

SAMPLE ID : MW-5

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

	PREPARATION -	PREPARATION -		
ELEMENT	ANALYSIS DATE	RESULT	LIMIT	
Lead	11/ 3/93	5	5	ug/

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/9

LAB #: 3J2201-5 MATRIX : WATER

SAMPLE ID : MW-5 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PREPARATION - ANALYSIS DATE RESULT DETECTION LIMIT PARAMETER Tot Recoverable Pet Hydrocarbons 11/ 1/93 ND 1 mg/I

3 # 3J2201-6 MATRIX: WATER

DATE EXTRACTED: DATE ANALYZED:

DATE RECEIVED:

10/21/93 NA

11/ 2/93

SAMPLE ID: MW-6

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene 68 1,2-Dichloroethane ND Bromodichloromethane ND 1,1-Dichloroethene ND Bromoform 1,2-Dichloroethene (Total) ND ND Bromomethane ND 1,2-Dichloropropane ND Carbon tetrachloride ND cis-1,3-Dichloropropene ND Chlorobenzene ND trans-1,3-Dichloropropene ND Chloroethane ND Ethylbenzene 140 2-Chloroethylvinyl ether Methylene chloride ND ND Chloroform ND 1,1,2,2-Tetrachloroethane ND coromethane ND Tetrachloroethene ND Dibromochloromethane ND Toluene 15 1.2-Dichlorobenzene ND 1,1,1-Trichloroethane ND 1,3-Dichlorobenzene ND 1,1,2-Trichloroethane ND 1,4-Dichlorobenzene Trichloroethene ND ND Dichlorodifluoromethane Trichlorofluoromethane ND ND 1,1-Dichloroethane ND Vinyl chloride ND Xylenes 82 Methyl-tert-butylether 6

(None Detected, lower detectable limit = NOTE: ND ug/L) as rec'd (None Detected, lower detectable limit = ND* ug/L) as rec'd (Not Analyzed)

SURROGATE RECOVERY: ACCEPTABLE LIMITS mochloromethane (HECD) 89 (78-122)(73 - 131)fluorotoluene (PID) 198

LAB #: 3J2201-6 MATRIX: WATER

DATE RECEIVED: 10/21/ DATE EXTRACTED: NA

DATE ANALYZED: 10/29/93

SAMPLE ID: MW-6 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

(None Detected) as rec'd NOTE: ND

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

Bromoform (ECD)

(41-152) (41-152)

274

B #: 3J2201-6 MATRIX: WATER

DATE RECEIVED: 10/21/93 DATE EXTRACTED: 10/26/93

DATE ANALYZED: 10/30/93

SAMPLE ID: MW-6

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene Acenaphthylene Anthracene	ND ND ND
Benzo(a) anthracene	ND
Benzo(a)pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
oenz (a,h) anthracene	ND
Luoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND
_	

(None Detected, lower detectable limit = 5 (None Detected, lower detectable limit = ug/L) as rec'd ug/L) as rec'd NOTE: ND ND*

(Not Analyzed)

SURROGATE RECOVERY:	ૠ	ACCEPTABLE	e limits
		WATER	SOLID
crobenzene-d5	56	(22-135)	(10-155)
_uorobiphenyl	53	(34-140)	(12-153)
Terphenyl-d14	24	(10-132)	(13-140)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/5

LAB #: 3J2201-6 MATRIX : WATER

SAMPLE ID : MW-6 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT
Lead	11/ 3/93	ND	5 u

DATE RECEIVED: 10/21/93

Æ #: 3J2201-6 MATRIX : WATER

SAMPLE ID : MW-6 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 1/93	2	1 r	ng/1

LAB # 3J2201-7 MATRIX: WATER

DATE RECEIVED: 10/21/

DATE EXTRACTED: NA

DATE ANALYZED: 11/ 2/93

SAMPLE ID: MW-7 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene Bromodichloromethane Bromoform	ND ND ND	1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (Total)	ND ND
Bromomethane Carbon tetrachloride Chlorobenzene	ND ND ND	1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND
Chloroethane 2-Chloroethylvinyl ether Chloroform	ND ND ND	Ethylbenzene Methylene chloride 1,1,2,2-Tetrachloroethane	ND ND
Chloromethane Dibromochloromethane 1,2-Dichlorobenzene	ND ND ND	Tetrachloroethene Toluene 1,1,1-Trichloroethane	ND ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND	1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane	ND ND
1,1-Dichloroethane	ИД	Vinyl chloride Xylenes Methyl-tert-butylether	ND ND

NOTE:	(None Detected, (None Detected,			1	ug/L) ug/L)	rec'd
	 (Not Analyzed)					

SURROGATE RECOVERY:	8	ACCEPTABLE LIMITS
Bromochloromethane (HECD)	107	(78-122)
Trifluorotoluene (PID)	104	(73-131)

#: 3J2201-7

MATRIX: WATER

DATE RECEIVED: 10/21/93 DATE EXTRACTED:

NA

DATE ANALYZED: 10/29/93

SAMPLE ID: MW-7 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

NOTE: ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

Lomoform (ECD)

(41-152) (41-152)

272

DATE RECEIVED: 10/21/93
DATE EXTRACTED: 10/26/93
DATE ANALYZED: 10/30/93

#: 3J2201-7 MATRIX: WATER

SAMPLE ID: MW-7 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a)anthracene	ND
Benzo(a)pyrene	ND
Benzo (b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
penz(a,h)anthracene riuoranthene Fluorene	ND ND ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	7
Phenanthrene	ND
Pyrene	ND

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd ND* (None Detected, lower detectable limit = ug/L) as rec'd

-- (Not Analyzed)

SURROGATE RECOVERY:	ૠ	ACCEPTABLE	LIMITS
ANTO		WATER	SOLID
crobenzene-d5	57	(22-135)	(10-155)
luorobiphenyl	54	(34-140)	(12-153)
Terphenyl-d14	27	(10-132)	(13-140)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21

LAB #: 3J2201-7 MATRIX : WATER

SAMPLE ID: MW-7 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

	PREPARATION -	PREPARATION -		
ELEMENT	ANALYSIS DATE	RESULT	LIMIT	
Lead	11/ 3/93	ND	5	ug

ANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

ار 3J2201-7 #: MATRIX : WATER

SAMPLE ID : MW-7 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 1/93	ND	1	mg/L

LAB # 3J2201-8 MATRIX: WATER •

SAMPLE ID: MW-8

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

DATE RECEIVED: 10/21/

DATE ANALYZED: 11/2/93

DATE EXTRACTED:

HRS84297

NA

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene Bromodichloromethane Bromoform	ND ND ND	1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (Total)	ND ND 1
Bromomethane Carbon tetrachloride	ND ND	1,2-Dichloropropane cis-1,3-Dichloropropene	ND ND
Chlorobenzene	3	trans-1,3-Dichloropropene	ND
Chloroethane	ND	Ethylbenzene	ND
2-Chloroethylvinyl ether	ND	Methylene chloride	ND
Chloroform	ND	1,1,2,2-Tetrachloroethane	ND
Chloromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	ND
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride Xylenes Methyl-tert-butylether	ND ND

NOTE: ND ND*		lower detectable lower detectable		1	• • •	as rec'd
--------------	--	-----------------------------------	--	---	-------	----------

SURROGATE RECOVERY:	8	ACCEPTABLE LIMITS
Bromochloromethane (HECD)	95	(78-122)
Trifluorotoluene (PID)	103	(73-131)

3 #: 3J2201-8

DATE RECEIVED: 10/21/93

DATE EXTRACTED:

NA

MATRIX: WATER

DATE ANALYZED: 10/29/93

SAMPLE ID: MW-8 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

(None Detected) as rec'd NOTE: ND

(Detected, but below quantitation limit; estimated value) J

SURROGATE RECOVERY: ACCEPTABLE LIMITS

WATER SOLID

ૠ

promoform (ECD)

(41-152) (41-152)

400

LAB #: 3J2201-8 MATRIX: WATER

DATE RECEIVED: 10/27 DATE EXTRACTED: 10/20 3

DATE ANALYZED: 11/5/93

SAMPLE ID: MW-8

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

POLYNUCLEAR AROMATIC HYDROCARBONS

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a) anthracene	ND
Benzo(a)pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
Dibenz(a,h)anthracene	ND
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND
•	

ND (None Detected, lower detectable limit = 5 ND* (None Detected, lower detectable limit = ug/L) as rec'd ug/L) as rec'd NOTE: (Not Analyzed)

SURROGATE RECOVERY:	%	ACCEPTABLE LIMITS
		WATER SOLID
Nitrobenzene-d5	69	(22-135) (10-155)
Fluorobiphenyl	73	(34-140) (12-153)
Terphenyl-d14	36	(10-132) (13-140)

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

B #: 3J2201-8 MATRIX : WATER

SAMPLE ID : MW-8 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Lead	11/3/03	MD	=	•••

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/9~

LAB #: 3J2201-8 MATRIX : WATER

SAMPLE ID : MW-8 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PREPARATION -DETECTION ANALYSIS DATE RESULT LIMIT PARAMETER Tot Recoverable Pet Hydrocarbons 11/ 1/93 ND 1 mg/L

AB # 3J2201-9 MATRIX: WATER

DATE RECEIVED: 10/21/93 DATE EXTRACTED: NA

DATE ANALYZED: 11/ 2/93

SAMPLE ID: MW-9 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene Bromodichloromethane Bromoform	ND ND ND	1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (Total)	ND ND
Bromomethane Carbon tetrachloride Chlorobenzene	ND ND ND	1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND
Chloroethane 2-Chloroethylvinyl ether Chloroform	ND ND ND	Ethylbenzene Methylene chloride 1,1,2,2-Tetrachloroethane	ND ND
.loromethane Dibromochloromethane 1,2-Dichlorobenzene	ND ND ND	Tetrachloroethene Toluene 1,1,1-Trichloroethane	ND ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND	1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane	ND ND
1,1-Dichloroethane	ND	Vinyl chloride Xylenes Methyl-tert-butylether	ND ND ND

NOTE:		lower detectable lower detectable	1	ug/L) as rec'd ug/L) as rec'd
	 (Not Analyzed)			

SURROGATE RECOVERY:	%	ACCEPTABLE LIMITS
mochloromethane (HECD)	92	(78-122)
.ifluorotoluene (PID)	103	(73-131)

LAB #: 3J2201-9

DATE RECEIVED: DATE EXTRACTED:

10/21/ NA

MATRIX: WATER

DATE ANALYZED:

10/29/93

SAMPLE ID: MW-9

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

(None Detected) as rec'd NOTE: ND (Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER

SOLID

Bromoform (ECD)

(41-152) (41-152)

212

AB #: 3J2201-9 MATRIX: WATER

DATE RECEIVED: 10/21/93 DATE EXTRACTED: 10/26/93

DATE ANALYZED: 11/5/93

HRS84297

SAMPLE ID: MW-9

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a) anthracene	ND
Benzo(a) pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
oenz (a, h) anthracene	ND
rluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND

(None Detected, lower detectable limit = 5 NOTE: ND ug/L) as rec'd (None Detected, lower detectable limit = ug/L) as rec'd ND* (Not Analyzed)

*	ACCEPTABL	E LIMITS
	WATER	SOLID
92	(22-135)	(10-155)
94	(34-140)	(12-153)
54	(10-132)	(13-140)
	94	92 (22-135) 94 (34-140)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21

LAB #: 3J2201-9 MATRIX : WATER

SAMPLE ID : MW-9 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT SELECTED LIST

HRS84297

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Lead	11/ 3/93	5	5	ug,

DATE RECEIVED: 10/21/93

. அ #: 3J2201-9 MATRIX : WATER

SAMPLE ID : MW-9 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PREPARATION -DETECTION PARAMETER ANALYSIS DATE RESULT LIMIT Tot Recoverable Pet Hydrocarbons 11/ 1/93 ND mg/L

(None Detected) ND

LAB # 3J2201-10 MATRIX: WATER

DATE RECEIVED: 10/21/ DATE EXTRACTED: NA

DATE ANALYZED: 11/ 2/93

SAMPLE ID: MW-10 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene	2	1,2-Dichloroethane	ND
Bromodichloromethane	ND	1,1-Dichloroethene	ND
Bromoform	ND	1,2-Dichloroethene (Total)	ND
Bromomethane	ND	1,2-Dichloropropane	ND
Carbon tetrachloride	ND	cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	ND
Chloroethane	ND	Ethylbenzene	3
2-Chloroethylvinyl ether	ND	Methylene chloride	ND
Chloroform	ND	1,1,2,2-Tetrachloroethane	ND
Chloromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	3
1,2-Dichlorobenzene	1	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride	ND
		Xylenes	3
		Methyl-tert-butylether	1

NOTE:	ND*	(None Detected, (None Detected,			1	ug/L) ug/L)		
		(Not Analyzed)						

SURROGATE RECOVERY:	*	ACCEPTABLE LIMITS
Bromochloromethane (HECD)	91	(78-122)
Trifluorotoluene (PID)	116	(73-131)

DATE RECEIVED:

10/21/93

AB #: 3J2201-10

SAMPLE ID: MW-10

DATE EXTRACTED:
DATE ANALYZED:

NA 10/29/93

MATRIX: WATER

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

NOTE: ND (None Detected) as rec'd

J (Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER

SOLID

ક

promoform (ECD)

(41-152) (41-152)

517

LAB #: 3J2201-10 MATRIX: WATER DATE RECEIVED: 10/21 DATE EXTRACTED: 10/26

DATE ANALYZED: 11/5/93

SAMPLE ID: MW-10

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

POLYNUCLEAR AROMATIC HYDROCARBONS

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene Acenaphthylene Anthracene	ND ND
Benzo(a) anthracene	ND
Benzo(a)pyrene	ND
Benzo (b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
Dibenz(a,h)anthracene	ND
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
z -me cmy anapachatene	1410
Naphthalene	ND
Phenanthrene	ND

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd ND* (None Detected, lower detectable limit = ug/L) as rec'd

-- (Not Analyzed)

SURROGATE RECOVERY:	8	ACCEPTABLE LIMITS
		water solid
Nitrobenzene-d5	80	(22-135) (10-155)
Fluorobiphenyl	88	(34-140) (12-153)
Terphenyl-d14	49	(10-132) (13-140)

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

#: 3J2201-10 MATRIX : WATER

SAMPLE ID : MW-10 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT		
Lead	11/ 3/93	ND	5	ug/:	

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/9

LAB #: 3J2201-10 MATRIX : WATER

SAMPLE ID : MW-10 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Total Dissolved Solids Tot Recoverable Pet Hydrocarbons	10/25-10/26/93	740	5	mg/L
	11/ 1/93	2	1	mg/L

3 # 3J2201-11 MATRIX: WATER

DATE RECEIVED: 10/21/93

DATE EXTRACTED: NA

DATE ANALYZED: 11/ 2/93

SAMPLE ID: MW-11 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene Bromodichloromethane	ND ND	1,2-Dichloroethane 1,1-Dichloroethene	ND ND
Bromoform	ND	1,2-Dichloroethene (Total)	ND
Bromomethane	ND	1,2-Dichloropropane	ND
Carbon tetrachloride	ND	cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	ND
Chloroethane	ND	Ethylbenzene	ND
2-Chloroethylvinyl ether	ND	Methylene chloride	ND
Chloroform	ND	1,1,2,2-Tetrachloroethane	ND
oromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	ND
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride	ND
•		Xylenes	ND
		Methyl-tert-butylether	ND

NOTE:	ND	(None	Detected,	lower	detectable	limit	=	1	ug/L)	as	rec'd
]	ND*	(None	Detected,	lower	detectable	limit	=		ug/L)	as	rec'd

(Not Analyzed)

SURROGATE RECOVERY:	8	ACCEPTABLE LIMITS
F Nochloromethane (HECD)	104	(78-122)
iluorotoluene (PID)	106	(73-131)

LAB #: 3J2201-11

MATRIX: WATER

DATE RECEIVED: 10/21

DATE EXTRACTED: NA

DATE ANALYZED: 10/29/93

SAMPLE ID: MW-11 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

(None Detected) as rec'd ND NOTE:

(Detected, but below quantitation limit; estimated value) J

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

Bromoform (ECD)

(41-152) (41-152)

2,106

B #: 3J2201-11 MATRIX: WATER

DATE RECEIVED: 10/21/93 DATE EXTRACTED: 10/26/93 DATE ANALYZED: 11/5/93

SAMPLE ID: MW-11

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

POLYNUCLEAR AROMATIC HYDROCARBONS

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a) anthracene	ND
Benzo (a) pyrene	ND
Benzo (b) fluoranthene	ND
Tours (N) Tract amounding	1410
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
Mesour.	
penz (a, h) anthracene	ND
ruoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND

(None Detected, lower detectable limit = 5 NOTE: ND ug/L) as rec'd (None Detected, lower detectable limit = ug/L) as rec'd ND*

(Not Analyzed)

SURROGATE RECOVERY:	*	ACCEPTABLE	LIMITS
Man.		WATER	SOLID
_robenzene-d5	75	(22-135)	(10-155)
uorobiphenyl	83	(34-140)	(12-153)
Terphenyl-d14	49	(10-132)	(13-140)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/5

LAB #: 3J2201-11 MATRIX : WATER

SAMPLE ID : MW-11 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Lead	11/ 3/93	65	20	ug

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

B #: 3J2201-11 MATRIX : WATER

SAMPLE ID : MW-11 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PREPARATION -DETECTION ANALYSIS DATE RESULT PARAMETER LIMIT Tot Recoverable Pet Hydrocarbons 11/ 2/93 ND 1 mg/I

LAB # 3J2201-12

DATE RECEIVED: 10/21
DATE EXTRACTED: NA

DATE ANALYZED: 11/2/93

MATRIX: WATER

SAMPLE ID: MW-12 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene Bromodichloromethane Bromoform	ND ND ND	1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (Total)	ND ND
Bromomethane Carbon tetrachloride Chlorobenzene	ND ND ND	1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND ND
Chloroethane 2-Chloroethylvinyl ether Chloroform	ND ND ND	Ethylbenzene Methylene chloride 1,1,2,2-Tetrachloroethane	ND ND
Chloromethane Dibromochloromethane 1,2-Dichlorobenzene	ND ND ND	Tetrachloroethene Toluene 1,1,1-Trichloroethane	ND ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND	1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane	ND ND ND
1,1-Dichloroethane	ND	Vinyl chloride Xylenes Methyl-tert-butylether	ND ND ND

NOTE: ND (None Detected, lower detectable limit = 1 ug/L) as rec'(
ND* (None Detected, lower detectable limit = ug/L) as rec'(

-- (Not Analyzed)

SURROGATE RECOVERY: % ACCEPTABLE LIMITS
Bromochloromethane (HECD) 101 (78-122)
Trifluorotoluene (PID) 105 (73-131)

AB #: 3J2201-12 MATRIX: WATER

DATE RECEIVED: DATE EXTRACTED:

10/21/93 NA

DATE ANALYZED:

10/29/93

SAMPLE ID: MW-12 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTIO

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

NOTE: ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value)

STIRROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER

SOLID

Bromoform (ECD)

(41-152) (41-152)

473

LAB #: 3J2201-12 MATRIX: WATER DATE RECEIVED: 10/2
DATE EXTRACTED: 10/2 3

DATE ANALYZED: 11/5/93

SAMPLE ID: MW-12

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	NE
Acenaphthylene	ND
Anthracene	ND
Benzo(a) anthracene	ND
Benzo(a)pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
Dibenz (a, h) anthracene	ND
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd

ND* (None Detected, lower detectable limit = ug/L) as rec'd

-- (Not Analyzed)

SURROGATE RECOVERY:	%	acceptable	LIMITS
		WATER	SOLID
Nitrobenzene-d5	71	(22-135)	(10-155)
Fluorobiphenyl	81	(34-140)	(12-153)
Terphenyl-d14	57	(10-132)	(13-140)

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

B #: 3J2201-12 MATRIX : WATER

SAMPLE ID : MW-12 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

•	PREPARATION -		DETECTION	
ELEMENT	ANALYSIS DATE	RESULT	LIMIT	
ī.ead	11/ 3/93	ND	5	ug/

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/

LAB #: 3J2201-12 MATRIX : WATER

SAMPLE ID : MW-12 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PREPARATION -DETECTION ANALYSIS DATE RESULT PARAMETER LIMIT Tot Recoverable Pet Hydrocarbons 11/ 2/93 ND 1 mg/L

3J2201-13 MATRIX: WATER

SAMPLE ID: MW-13

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

DATE EXTRACTED: NA

DATE ANALYZED: 11/2/93

DATE RECEIVED:

HRS84297

10/21/93

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene	ND	1,2-Dichloroethane	ND
Bromodichloromethane	ND	1,1-Dichloroethene	ND
Bromoform	ND	1,2-Dichloroethene (Total)	
Bromomethane	ND	1,2-Dichloropropane	NTO.
Carbon tetrachloride	ND		ND
		cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	ND
Chloroethane	ND	Ethylbenzene	ND
2-Chloroethylvinyl ether	ND	Methylene chloride	45 B
Chloroform	ND	1,1,2,2-Tetrachloroethane	ND
Jordanna .			
coromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	ND
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	MD
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
Dichiologilidolomechane	ND	111CH1010IIdO10Mechane	ND
1,1-Dichloroethane	ND	Vinyl chloride	ND
•		Xylenes	ND
		Methyl-tert-butylether	ND

NOTE: ND (None Detected, lower detectable limit = 1 ug/L) as rec'd
ND* (None Detected, lower detectable limit = ug/L) as rec'd
-- (Not Analyzed)

SURROGATE RECOVERY: % ACCEPTABLE LIMITS
F mochloromethane (HECD) 85 (78-122)
fluorotoluene (PID) 106 (73-131)

SAMPLE ID: MW-13 BOCA CHICA FLYING CLUB

LAB #: 3J2201-13 MATRIX: WATER DATE RECEIVED: 10/21/DATE EXTRACTED: NADATE ANALYZED: 10/29/93

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

NOTE: ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER

SOLID

ૠ

Bromoform (ECD)

J

(41-152) (41-152)

345

B #: 3J2201-13 MATRIX: WATER

DATE RECEIVED: 10/21/93 DATE EXTRACTED: 10/26/93

DATE ANALYZED: 10/30/93

SAMPLE ID: MW-13

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo (a) anthracene	ND
Benzo (a) pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
penz (a, h) anthracene	ND
ruoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND
- 4	

NOTE:	ND	(None Detected,	lower detectable 1	imit = 5	ug/L) as rec'd
	ND*	(None Detected,	lower detectable 1	.imit =	ug/L) as rec'd
		/Not Amalumed)			

SURROGATE RECOVERY:	%	ACCEPTABLE LIMITS
		water solid
_robenzene-d5	83	(22-135) (10-155)
uorobiphenyl	7 7	(34-140) (12-153)
Terphenyl-d14	32	(10-132) (13-140)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/

LAB #: 3J2201-13 MATRIX : WATER

SAMPLE ID : MW-13 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LT LIMIT		
Lead	11/ 3/93	8	5	110	

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

3 #: 3J2201-13 MATRIX : WATER

SAMPLE ID : MW-13 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PREPARATION -DETECTION PARAMETER ANALYSIS DATE RESULT LIMIT Tot Recoverable Pet Hydrocarbons 11/ 2/93 ND 1 mg/L

LAB # 3J2201-14 MATRIX: WATER

DATE RECEIVED: 10/23 DATE EXTRACTED: NA.

DATE ANALYZED: 11/2/93

SAMPLE ID: MW-14D BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

2 ND	1,2-Dichloroethane	ND
תא		
-1-2	1,1-Dichloroethene	ND
ND	1,2-Dichloroethene (Total)	14
ND	1,2-Dichloropropane	ND
ND		ND
ND	trans-1,3-Dichloropropene	ND
ND	Ethylbenzene	1
ND	_	6 B
ND	1,1,2,2-Tetrachloroethane	ND
ND	Tetrachloroethene	ND
ND	Toluene	ND
4	1,1,1-Trichloroethane	ND
ND	1.1.2-Trichloroethane	ND
ND		ND
ND	Trichlorofluoromethane	ND
ND	Vinyl chloride Xylenes Methyl-tert-butylether	ND 3 7
	ND N	ND 1,2-Dichloroethene (Total) ND 1,2-Dichloropropane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND Ethylbenzene ND Methylene chloride ND 1,1,2,2-Tetrachloroethane ND Tetrachloroethene ND Toluene 4 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane ND Trichloroethene ND Trichloroethene ND Trichloroethene ND Trichloroethene ND Trichlorofluoromethane ND Vinyl chloride

NOTE:	ND ND*	•	lower detectable lower detectable	1	ug/L) ug/L)		
	-1	(Mone Deceded)	TOWER GOLDCOM		49,4,	~ ~	,

(Not Analyzed)

SURROGATE RECOVERY:	%	ACCEPTABLE LIMITS
Bromochloromethane (HECD)	101	(78-122)
Trifluorotoluene (PID)	115	(73-131)

B #: 3J2201-14

MATRIX: WATER

DATE RECEIVED: 10/21/93

DATE EXTRACTED:

NA

DATE ANALYZED: 10/29/93

SAMPLE ID: MW-14D BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

NOTE: ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY: ACCEPTABLE LIMITS

WATER SOLID

ક

promoform (ECD)

(41-152) (41-152)

727

LAB #: 3J2201-14 MATRIX: WATER DATE RECEIVED: 10/21
DATE EXTRACTED: 10/26,

DATE ANALYZED: 10/30/93

SAMPLE ID: MW-14D

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a)anthracene	ND
Benzo(a) pyrene	ND
Benzo (b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
Dibenz (a, h) anthracene	ND
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND
- 4	

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd ND* (None Detected, lower detectable limit = ug/L) as rec'd (Not Analyzed)

SURROGATE RECOVERY:	*	ACCEPTABLE LIM	ITS
		WATER SOL	ID
Nitrobenzene-d5	79	(22-135) (10-	155)
Fluorobiphenyl	78	(34-140) (12-	153)
Terphenyl-d14	5 4	(10-132) (13-	140)

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

B#: 3J2201-14 MATRIX : WATER

SAMPLE ID : MW-14D BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

PREPARATION -DETECTION ANALYSIS DATE RESULT ELEMENT LIMIT

11/ 3/93 Lead ND 5 ug/

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/9

LAB #: 3J2201-14 MATRIX : WATER

SAMPLE ID : MW-14D BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT		
Total Dissolved Solids	10/25-10/26/93	3,100		mg/L	
Tot Recoverable Pet Hydrocarbons	11/ 2/93	ND		mg/L	

3 # 3J2201-15

DATE RECEIVED: 10/21/93
DATE EXTRACTED: NA
DATE ANALYZED: 11/ 2/93

MATRIX: WATER

SAMPLE ID: MW-15D BOCA CHICA FLYING CLUB

VOLATILE ORGANICS METHOD 601/602 - GC CERTIFICATION #: E84059

HRS84297

Benzene Bromodichloromethane Bromoform	ND ND ND	1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (Total)	ND 10 39
Bromomethane Carbon tetrachloride	ND	1,2-Dichloropropane	ND
Chlorobenzene	ND 2	cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND
Chloroethane	ND	Ethylbenzene	ND
2-Chloroethylvinyl ether	ND	Methylene chloride	7 B
Chloroform	ND	1,1,2,2-Tetrachloroethane	ND
.oromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	ND
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	1
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	11	Vinyl chloride	ND
		Xylenes	ND
		Methyl-tert-butylether	ND

	ND*	(None Detected, (None Detected, (Not Analyzed)					1	ug/L) ug/L)			
--	-----	--	--	--	--	--	---	----------------	--	--	--

SURROGATE RECOVERY:	8	ACCEPTABLE LIMITS
F mochloromethane (HECD)	102	(78-122)
fluorotoluene (PID)	107	(73-131)

LAB #: 3J2201-15

DATE RECEIVED: 10/21/9~ DATE EXTRACTED: NA

DATE ANALYZED: 10/29/93

MATRIX: WATER

SAMPLE ID: MW-15D BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

Ethylene dibromide

0.02 ND

RESULT (ug/L) LIMIT

NOTE: ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value) J

SURROGATE RECOVERY: ACCEPTABLE LIMITS

WATER SOLID

B

Bromoform (ECD)

(41-152) (41-152)

261

#: 3J2201-15
MATRIX: WATER

DATE RECEIVED: 10/21/93
DATE EXTRACTED: 10/26/93

DATE ANALYZED:

10/30/93

SAMPLE ID: MW-15D

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a)anthracene	ND
Benzo(a)pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
James .	
anz (a, h) anthracene	ND
F _uoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd ND* (None Detected, lower detectable limit = ug/L) as rec'd -- (Not Analyzed)

SURROGATE RECOVERY:	ъ	ACCEPTABLE	e limits
es de la factoria.		WATER	SOLID
obenzene-d5	77	(22-135)	(10-155)
hadorobiphenyl	72	(34-140)	(12-153)
Terphenyl-d14	69	(10-132)	(13-140)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/9

LAB #: 3J2201-15 MATRIX : WATER

SAMPLE ID : MW-15D BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Lead	11/3/93	NTO	5	316

(None Detected) NOTE: ND

ANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

/ #: 3J2201-15 MATRIX : WATER

SAMPLE ID : MW-15D BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PREPARATION -DETECTION ANALYSIS DATE RESULT PARAMETER LIMIT Tot Recoverable Pet Hydrocarbons 11/2/93 ND 1 mg/L

LAB # 3J2201-16 MATRIX: WATER

DATE RECEIVED: 10/21/~ DATE EXTRACTED: NA

DATE ANALYZED: 11/ 2/93

SAMPLE ID: MW-16

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene	ND	1,2-Dichloroethane	ND
Bromodichloromethane	ND	1,1-Dichloroethene	ND
Bromoform	ND	1,2-Dichloroethene (Total)	ND
Bromomethane	ND	1,2-Dichloropropane	ND
Carbon tetrachloride	ND	cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	ND
Chloroethane	ND	Ethylbenzene	ND
2-Chloroethylvinyl ether	ND	Methylene chloride	1 B
Chloroform	ND	1,1,2,2-Tetrachloroethane	ND
Chloromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	ND
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene		Trichloroethene	
	ND		ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride	ND
•		Xylenes	ND
		Methyl-tert-butylether	ND
		-	

(None Detected, lower detectable limit = ug/L) as rec'd 1 NOTE: ND (None Detected, lower detectable limit = ug/L) as rec'd ND*

(Not Analyzed)

SURROGATE RECOVERY: ACCEPTABLE LIMITS Bromochloromethane (HECD) 90 (78-122)

(73 - 131)Trifluorotoluene (PID) 106

#: 3J2201-16

MATRIX: WATER

DATE RECEIVED: 10/21/93

DATE EXTRACTED: NA

DATE ANALYZED: 10/29/93

SAMPLE ID: MW-16 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

NOTE: ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

ૠ

L_omoform (ECD)

(41-152) (41-152)

466

ENSECO MADSWORTH/ALERT

ratories

COMPANY: ABB ENV LAB #: 3J2201-16 MATRIX: WATER MENTAL SERVICES, INC.

DATE RECEIVED: 10/21/ DATE EXTRACTED: 10/26/

DATE ANALYZED: 10/30/93

HRS84297

SAMPLE ID: MW-16

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a) anthracene	ND
Benzo(a)pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
Dibenz (a, h) anthracene	ND
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd ND* (None Detected, lower detectable limit = ug/L) as rec'd -- (Not Analyzed)

SURROGATE RECOVERY:	%	ACCEPTABLE LIMITS
		WATER SOLID
Nitrobenzene-d5	77	(22-135) (10-155)
Fluorobiphenyl	79	(34-140) (12-153)
Terphenyl-d14	45	(10-132) (13-140)

.PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

.в #: 3J2201-16 MATRIX : WATER

SAMPLE ID : MW-16 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT SELECTED LIST

HRS84297

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Lead	11/ 3/93	ND	5 i	

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/9

LAB #: 3J2201-16 MATRIX : WATER

SAMPLE ID : MW-16 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PREPARATION -DETECTION ANALYSIS DATE RESULT PARAMETER LIMIT Tot Recoverable Pet Hydrocarbons 11/ 2/93 ND 1 mg/L

B # 3J2201-17 MATRIX: WATER

DATE EXTRACTED: NA DATE ANALYZED: 11/ 2/93

DATE RECEIVED: 10/21/93

SAMPLE ID: MW-17 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene	16	1,2-Dichloroethane	ND
Bromodichloromethane	ND	1,1-Dichloroethene	ND
Bromoform	ND	1,2-Dichloroethene (Total)	ND
Bromomethane	ND	1,2-Dichloropropane	ND
Carbon tetrachloride	ND	cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	ND
Chloroethane	ND	Ethylbenzene	6
2-Chloroethylvinyl ether	ND	Methylene chloride	21 B
C oroform	ND	1,1,2,2-Tetrachloroethane	ND
loromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	6
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride	ND
· ,		Xylenes	15
		Methyl-tert-butylether	3

NOTE:	(None Detected, (None Detected,			1	ug/L) ug/L)	
	 (Not Analyzed)					

STROGATE RECOVERY:	*	ACCEPTABLE LIMITS
nochloromethane (HECD)	95	(78-122)
ifluorotoluene (PID)	716	(73-131)

LAB #: 3J2201-17 MATRIX: WATER

DATE RECEIVED: 10/21/ DATE EXTRACTED:

NA

DATE ANALYZED: 10/29/93

SAMPLE ID: MW-17 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

NOTE: ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

ક્ષ

Bromoform (ECD)

(41-152) (41-152)

291

AB #: 3J2201-17

SAMPLE ID: MW-17

DATE RECEIVED: 10/21/93
DATE EXTRACTED: 10/26/93
DATE ANALYZED: 10/30/93

MATRIX: WATER

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo (a) anthracene	ND
Benzo(a) pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
.oenz(a,h)anthracene	ND
Fluoranthene	ND
Fluorene	ND
ridorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND
-	

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd ND* (None Detected, lower detectable limit = ug/L) as rec'd -- (Not Analyzed)

SURROGATE RECOVERY:	%	acceptabli	LIMITS
and the Contraction of the Contr		WATER	SOLID
crobenzene-d5	85	(22-135)	(10-155)
rluorobiphenyl	81	(34-140)	(12-153)
Terphenyl-d14	41	(10-132)	(13-140)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/9

LAB #: 3J2201-17 MATRIX : WATER

SAMPLE ID : MW-17 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Lead	11/ 3/93	7	5	136

DATE RECEIVED: 10/21/93

3 #: 3J2201-17 MATRIX : WATER

SAMPLE ID : MW-17 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE RESULT		DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 2/93	1	1	mg/L

3 # 3J2201-18 MATRIX: WATER

DATE RECEIVED: DATE EXTRACTED:

10/21/93 NA

DATE ANALYZED: 11/ 2/93

SAMPLE ID: MW-18 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene Bromodichloromethane	ND ND	1,2-Dichloroethane 1,1-Dichloroethene	ND ND
Bromoform	ND	1,2-Dichloroethene (Total)	5
Bromomethane	ND	1,2-Dichloropropane	ND
Carbon tetrachloride	ND	cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	ND
Chloroethane	ND	Ethylbenzene	2
2-Chloroethylvinyl ether	ND	Methylene chloride	ND
Chloroform	ND	1,1,2,2-Tetrachloroethane	ND
oromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	2
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride Xylenes	ND 5
		Methyl-tert-butylether	ND

NOTE: ND (None Detected, lower detectable limit = 1 ND* (None Detected, lower detectable limit = ug/L) as rec'd ug/L) as rec'd

(Not Analyzed)

SURROGATE RECOVERY: ACCEPTABLE LIMITS 90 (78-122)mochloromethane (HECD) ifluorotoluene (PID) 188 (73-131)

LAB #: 3J2201-18 MATRIX: WATER

DATE RECEIVED: 10/21/ DATE EXTRACTED: NA

DATE ANALYZED: 10/29/93

SAMPLE ID: MW-18 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

(None Detected) as rec'd NOTE:

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

Bromoform (ECD)

(41-152) (41-152)

1,448

B#: 3J2201-18 MATRIX: WATER

DATE RECEIVED: 10/21/93 DATE EXTRACTED: 10/26/93 10/30/93

DATE ANALYZED:

SAMPLE ID: MW-18

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

POLYNUCLEAR AROMATIC HYDROCARBONS METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a)anthracene	ND
Benzo(a) pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
.benz (a, h) anthracene	ND
rluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND

(None Detected, lower detectable limit = 5 NOTE: ND ug/L) as rec'd (None Detected, lower detectable limit = ND* ug/L) as rec'd (Not Analyzed)

*	ACCEPTABLE	LIMITS
	WATER	SOLID
89	(22-135)	(10-155)
87	(34-140)	(12-153)
48	(10-132)	(13-140)
	89 87	WATER 89 (22-135) 87 (34-140)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/5

LAB #: 3J2201-18 MATRIX : WATER

SAMPLE ID : MW-18 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

SELECTED LIST

HRS84297

5

ug/1

Total metals analysis results - as received

PREPARATION -DETECTION ELEMENT ANALYSIS DATE RESULT LIMIT

Lead 11/ 3/93 ND

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

B #: 3J2201-18 MATRIX : WATER

SAMPLE ID : MW-18 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PREPARATION -DETECTION ANALYSIS DATE RESULT PARAMETER LIMIT Tot Recoverable Pet Hydrocarbons 11/2/93 ND 1 mg/I

LAB # 3J2201-19 MATRIX: WATER

DATE RECEIVED: 10/21/55 DATE EXTRACTED: NA DATE ANALYZED: 11/ 2/93

SAMPLE ID: MW-19 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene Bromodichloromethane Bromoform	ND ND	1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (Total)	ND ND 16
Bromomethane Carbon tetrachloride Chlorobenzene	ND ND	1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND
Chloroethane 2-Chloroethylvinyl ether Chloroform	ND ND ND	Ethylbenzene Methylene chloride 1,1,2,2-Tetrachloroethane	ND ND
Chloromethane Dibromochloromethane 1,2-Dichlorobenzene	ND ND	Tetrachloroethene Toluene 1,1,1-Trichloroethane	ND ND ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND	1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane	ND ND ND
1,1-Dichloroethane	ND	Vinyl chloride Xylenes Methyl-tert-butylether	ND ND ND

ND (None Detected, lower detectable limit = 1 ND* (None Detected, lower detectable limit = ug/L) as rec'd NOTE: ND ug/L) as rec'd (Not Analyzed)

ACCEPTABLE LIMITS SURROGATE RECOVERY: (78-122)89 Bromochloromethane (HECD) (73-131)104 Trifluorotoluene (PID)

DATE RECEIVED: 10/21/93

NA

AB #: 3J2201-19 MATRIX: WATER

DATE EXTRACTED:

DATE ANALYZED: 10/30/93

SAMPLE ID: MW-19 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

(None Detected) as rec'd NOTE: ND

(Detected, but below quantitation limit; estimated value) J

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

sromoform (ECD)

(41-152) (41-152)

410

MATRIX: WATER

LAB #: 3J2201-19

SAMPLE ID: MW-19

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

DATE RECEIVED: 10/21 DATE EXTRACTED: 10/26,

DATE ANALYZED: 10/30/93

HRS84297

POLYNUCLEAR AROMATIC HYDROCARBONS

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene Acenaphthylene	ND ND
Anthracene	ND
Benzo(a) anthracene	ND
Benzo(a) pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
Dibenz (a, h) anthracene	ND
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND
- <u>a</u>	

(None Detected, lower detectable limit = 5 ug/L) as rec'd NOTE: ND (None Detected, lower detectable limit = ug/L) as rec'd ND*

(Not Analyzed)

SURROGATE RECOVERY:	%	ACCEPTABLE	LIMITS
		WATER	SOLID
Nitrobenzene-d5	77	(22-135)	(10-155)
Fluorobiphenyl	76	(34-140)	(12-153)
Terphenyl-d14	34	(10-132)	(13-140)

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

Total metals analysis results - as received

B #: 3J2201-19 MATRIX : WATER

SAMPLE ID : MW-19 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT SELECTED LIST

HRS84297

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT
Lead	11/ 3/93	ND	5 v

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/

LAB #: 3J2201-19 MATRIX : WATER

SAMPLE ID : MW-19 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 2/93	1	1 mg/	'I

B # 3J2201-20 MATRIX: WATER

SAMPLE ID: MW-20

Benzene

BOCA CHICA FLYING CLUB

VOLATILE ORGANICS METHOD 601/602 - GC DATE RECEIVED: 10/21/93 DATE EXTRACTED: NA DATE ANALYZED: 11/ 2/93

12

CERTIFICATION #: E84059 HRS84297

8 1,2-Dichloroethane ND Bromodichloromethane ND 1,1-Dichloroethene ND Bromoform 1,2-Dichloroethene (Total) ND ND Bromomethane ND 1,2-Dichloropropane ND Carbon tetrachloride ND cis-1,3-Dichloropropene ND Chlorobenzene ND trans-1,3-Dichloropropene ND Chloroethane Ethylbenzene ND 96 2-Chloroethylvinyl ether Methylene chloride ND 1 B C' 'oroform ND 1,1,2,2-Tetrachloroethane ND loromethane ND Tetrachloroethene ND Dibromochloromethane ND Toluene 12 1,2-Dichlorobenzene 1 1,1,1-Trichloroethane ND 1,3-Dichlorobenzene ND 1,1,2-Trichloroethane ND Trichloroethene 1,4-Dichlorobenzene ND ND Dichlorodifluoromethane ND Trichlorofluoromethane ND Vinyl chloride 1,1-Dichloroethane ND ND Xylenes 40

Methyl-tert-butylether

(None Detected, lower detectable limit = NOTE: ND 1 ug/L) as rec'o (None Detected, lower detectable limit = ND* ug/L) as rec'o (Not Analyzed)

ACCEPTABLE LIMITS S'TROGATE RECOVERY: mochloromethane (HECD) (78-122)92 (73 - 131)1,719 ifluorotoluene (PID)

LAB #: 3J2201-20 MATRIX: WATER

DATE RECEIVED: 10/21/ DATE EXTRACTED: NA

DATE ANALYZED: 10/30/93

SAMPLE ID: MW-20 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

NOTE: ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY: ACCEPTABLE LIMITS

WATER SOLID

Bromoform (ECD)

(41-152) (41-152)

670

B #: 3J2201-20 MATRIX: WATER

SAMPLE ID: MW-20

DATE RECEIVED: 10/21/93 DATE EXTRACTED: 10/26/93

DATE ANALYZED: 10/30/93

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a)anthracene	ND
Benzo(a) pyrene	ND
Benzo (b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
benz (a, h) anthracene	ND
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd ND* (None Detected, lower detectable limit = ug/L) as rec'd

(Not Analyzed)

SURROGATE RECOVERY:	%	ACCEPTABLE	LIMITS
×11700×		WATER	SOLID
crobenzene-d5	78	(22-135)	(10-155)
_iuorobiphenyl	77	(34-140)	(12-153)
Terphenyl-d14	50	(10-132)	(13-140)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/

LAB #: 3J2201-20 MATRIX : WATER

SAMPLE ID : MW-20 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT
Lead	11/ 3/93	14	8 u

DATE RECEIVED: 10/21/93

AB #: 3J2201-20 MATRIX : WATER

SAMPLE ID : MW-20 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE RESULT		DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 2/93	2	1 1	ng/I

LAB # 3J2201-21

DATE RECEIVED: 10/2 DATE EXTRACTED: N. DATE ANALYZED: 11/ 2/93

HRS84297

MATRIX: WATER

SAMPLE ID: DUPLICATE 1 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene	61	10 71 17	
	61	1,2-Dichloroethane	ND
Bromodichloromethane	ND	1,1-Dichloroethene	ND
Bromoform	ND	1,2-Dichloroethene (Total)	ND
Bromomethane	ND	1,2-Dichloropropane	ND
Carbon tetrachloride	ND	cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	ND
Chloroethane	ND	Ethylbenzene	120
2-Chloroethylvinyl ether	ND	Methylene chloride	23 B
Chloroform	ND	1,1,2,2-Tetrachloroethane	ND
Chloromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	14
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride	ND
		Xylenes	74
		Methyl-tert-butylether	8

(None Detected, lower detectable limit = 5 NOTE: ND ug/L) as rec' (None Detected, lower detectable limit = ND* ug/L) as rec' (Not Analyzed)

SURROGATE RECOVERY: ACCEPTABLE LIMITS Bromochloromethane (HECD) 85 (78-122)Trifluorotoluene (PID) 190 (73-131)

B #: 3J2201-21

MATRIX: WATER

DATE RECEIVED: 10/21/93

DATE EXTRACTED:

NA

DATE ANALYZED:

10/30/93

SAMPLE ID: DUPLICATE 1 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

PARAMETER

Ethylene dibromide

RESULT (ug/L)

LIMIT

DETECTION

ND

0.02

NOTE: ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value) J

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER

SOLID

Bromoform (ECD)

(41-152) (41-152)

276

LAB #: 3J2201-21 MATRIX: WATER

DATE RECEIVED: 10/21 DATE EXTRACTED: 10/26 3

DATE ANALYZED: 10/30/93

HRS84297

SAMPLE ID: DUPLICATE 1 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a) anthracene	ND
Benzo(a)pyrene	ND
Benzo(b) fluoranthene	ND
Benzo (ghi) perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
Dibenz (a, h) anthracene	ND
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND

NOTE:	ND	(None Detected,	lower detectable	limit = 5	ug/L) as rec'd
	ND*	(None Detected,	lower detectable	limit =	ug/L) as rec'd
		(Not Analyzed)			_

SURROGATE RECOVERY:	8	ACCEPTABLE LIMITS
		water solid
Nitrobenzene-d5	94	(22-135) (10-155)
Fluorobiphenyl	92	(34-140) (12-153)
Terphenyl-d14	80	(10-132) (13-140)

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

ತ #: 3J2201-21 MATRIX : WATER

SAMPLE ID : DUPLICATE 1 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT SELECTED LIST

HRS84297

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Lead	11/ 3/93	7	5	ug /1

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/9

LAB #: 3J2201-21 MATRIX : WATER

SAMPLE ID : DUPLICATE 1 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE RESULT		DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 2/93	2	1	mg/L

1

ND

1

ND

ND

ND

ND

B # 3J2201-22 MATRIX: WATER

SAMPLE ID: DUPLICATE 2

Bromodichloromethane

Carbon tetrachloride

Dibromochloromethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1.4-Dichlorobenzene

1,1-Dichloroethane

Dichlorodifluoromethane

2-Chloroethylvinyl ether

DATE RECEIVED: 10/21/93 DATE EXTRACTED: NA DATE ANALYZED: 11/ 2/93

Benzene

Bromoform

Bromomethane

Chlorobenzene

Chloroethane

romethane

Chloroform

BOCA CHICA FLYING CLUB

VOLATILE ORGANICS METHOD 601/602 - GC **CERTIFICATION #:** E84059 HRS84297

ND

2

1

1,2-Dichloroethane ND 1,1-Dichloroethene ND 1.2-Dichloroethene (Total) ND 1,2-Dichloropropane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND Ethylbenzene 2 Methylene chloride 2 B 1,1,2,2-Tetrachloroethane ND Tetrachloroethene ND Toluene 3 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane ND Trichloroethene ND Trichlorofluoromethane ND

Vinyl chloride

Methyl-tert-butylether

Xylenes

(None Detected, lower detectable limit = NOTE: ND 1 ug/L) as rec'd ND* (None Detected, lower detectable limit = ug/L) as rec'd (Not Analyzed)

SURROGATE RECOVERY: ACCEPTABLE LIMITS mochloromethane (HECD) 82 (78-122)_fluorotoluene (PID) 115 (73 - 131)

LAB #: 3J2201-22

MATRIX: WATER

DATE RECEIVED: 10/21

DATE EXTRACTED:

NA

DATE ANALYZED: 10/30/93

SAMPLE ID: DUPLICATE 2 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

(None Detected) as rec'd NOTE: ND

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

ક્ર

Bromoform (ECD)

(41-152) (41-152)

532

MPANY: ABB ENVIRONMENTAL SERVICES, INC.

AB #: 3J2201-22 MATRIX: WATER DATE RECEIVED: 10/21/93

DATE EXTRACTED: 10/26/93

DATE ANALYZED: 10/30/93

SAMPLE ID: DUPLICATE 2

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

HRS84297

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
	112
Benzo(a) anthracene	ND
Benzo (a) pyrene	ND
Benzo(b) fluoranthene	ND
	•••
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Tysene	ND
www.	.12
benz (a, h) anthracene	ND
Fluoranthene	ND
Fluorene	ND
114016116	112
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
5 - Me cul tuabucuerene	MD
Naphthalene	ND
Phenanthrene	ND
	ND
Pyrene	HD

NOTE: ND (None Detected, lower detectable limit = 5 ug/L) as rec'd ND* (None Detected, lower detectable limit = ug/L) as rec'd

-- (Not Analyzed)

SURROGATE RECOVERY:	%	ACCEPTABLE LIMITS	
in the state of th		water solid	
trobenzene-d5	80	(22-135) (10-155))
fluorobiphenyl	77	(34-140) (12-153))
Terphenyl-d14	53	(10-132) (13-140))

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/

LAB #: 3J2201-22 MATRIX : WATER

SAMPLE ID : DUPLICATE 2 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT
Lead	11/ 3/93	ND	5 1

ANY: ABB ENVIRONMENTAL SERVICES, INC.

3 # 3J2201-BK MATRIX: WATER

3J2201-BK

SAMPLE ID: LABORATORY BLANK

CERTIFICATION #: E84059

DATE EXTRACTED:

DATE RECEIVED: 10/21/93

DATE ANALYZED: 11/ 1/93

HRS84297

NA

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene	ND	1,2-Dichloroethane	ND
Bromodichloromethane	ND	1,1-Dichloroethene	ND
Bromoform	ND	1,2-Dichloroethene (Total)	
DI OMOI OIM	MD	1,2-Dichioroethene (Total)	ND
Bromomethane	ND	1,2-Dichloropropane	ND
Carbon tetrachloride	ND	cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	
	MD	crams-1,3-Dichioropropene	ND
Chloroethane	ND	Ethylbenzene	ND
2-Chloroethylvinyl ether	ND	Methylene chloride	2
Chloroform	ND	<u> </u>	
CATOLOIM	MD	1,1,2,2-Tetrachloroethane	ND
oromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	
		=	ND
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	
			ND
Dichlorodifluoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride	ND
		Xylenes	ND
		· · · · · · · · · · · · · · · · · · ·	
		Methyl-tert-butylether	ND

NOTE:	ND*	(None Detected, (None Detected, (Not Analyzed)			1	ug/L) ug/L)	
		(NOT ADALYZED)					

SURROGATE RECOVERY:	8	ACCEPTABLE LIMITS
I nochloromethane (HECD)	90	(78-122)
.fluorotoluene (PID)	108	(73-131)

QUALITY ASSURANCE / QUALITY CONTROL PROGRAM SUMMARY

(cont'd)

At that time all associated samples must be re-analyzed. A minimum of five percent (5%) of all laboratory analyses are laboratory analytical method check samples.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) Recovery Evaluations

Known concentrations of designated matrix spikes (actual analytical method compounds) are added to two of three separate aliquots of a sequentially predetermined sample prior to extraction and analysis. Percent recovery determinations are calculated from both of the spiked samples by comparison to the actual values generated from the unspiked sample. These percent recovery determinations indicate the accuracy of the analysis at recovering actual analytical method compounds from the matrix. Relative percent difference determinations calculated from a comparison of the MS/MSD recoveries demonstrate the precision of the analytical method. percent recovery and relative percent difference data is displayed alongside their respective acceptable analytical method performance limits in the QA/QC section of the report. The MS/MSD are considered in control when the precision is within established control limits and the associated check sample has been found to be acceptable. A minimum of ten percent (10%) of all analyses are MS/MSD quality control samples.

COMPOUND	SAMPLE CONC.	MS %REC	MSD %REC	RPD	QC RPD	C LIMITS RECOVERY
4,4'-DDT Benzene	0 10	95 86	112 93	16 8	22 20	66-119 39-150
(cmpd. name)	sample result	1st% recov.	2nd% recov.	Rel.% diff.		ep. method form range

Analytical Result Oualifiers

The following qualifiers, as defined below, may be appended to analytical results in order to allow proper interpretation of the results presented:

- J indicates an estimated concentration (typically used when a dilution, matrix interference or instrumental limitation prevents accurate quantitation of a particular analyte).
- B indicates the presence of a particular analyte in the laboratory blank analyzed concurrently with the samples. Results must be interpreted accordingly.
- DIL indicates that because of matrix interferences and/or high analyte concentrations, it was necessary to dilute the sample to a point where the surrogate or spike concentrations fell below a quantifiable amount and counct be reported.

UALITY ASSURANCE / QUALITY CONTROL PROGRAM SUMMARY

Wadsworth/ALERT Laboratories considers continuous analytical performance evaluations to be an integral portion of the data package, and routinely includes the pertinent QA/QC data associated with various analytical result reports. Brief discussions of the various QA/QC procedures utilized to measure acceptable method and matrix performance follow.

Surrogate Spike Recovery Evaluations

Known concentrations of designated surrogate spikes, consisting of a number of similar, non-method compounds or method compound analogues, are added, as appropriate, to routine GC and GC/MS sample fractions prior to extraction and analysis. The percent recovery determinations calculated from the subsequent analysis is an indication of the overall method efficiency for the individual sample. This surrogate spike recovery data is displayed alongside acceptable analytical method performance limits at the bottom of each applicable analytical result report sheet.

Acceptable method performance for Base/Neutral Acid extractables is NOTE: indicated by two (2) of three (3) surrogates for each fraction with a minimum recovery of ten (10) percent each. For Pesticides one (1) of two (2) surrogates meeting performance criteria is acceptable.

aboratory Analytical Method Blank Evaluations

Laboratory analytical method blanks are systematically prepared and analyzed in order to continuously evaluate the system interferences and background contamination levels associated with each analytical method. These method blanks include all aspects of actual laboratory method analysis (chemical reagents, glassware, etc.), substituting laboratory reagent water or solid for actual sample. The method blank must not contain any analytes above the reported detection limit. The following common laboratory contaminants are exceptions to this rule provided they are not present at greater than five times the detection limit.

<u>Volatiles</u> Toluene 2-Butanone Acetone

Semi-volatiles Methylene chloride Dimethyl phthalate Diethly phthalate Di-n-butyl phthalate Butyl benzyl phthalate Bis (2-ethylhexyl) phthalate

Metals Calcium Magnesium Sodium

A minimum of five percent (5%) of all laboratory analyses are laboratory analytical method blanks.

Laboratory Analytical Method Check Sample Evaluations

Known concentrations of designated matrix spikes (actual analytical method rompounds) are added to a laboratory reagent blank prior to extraction and nalysis. Percent recovery determinations demonstrate the performance of the analytical method. Failure of a check sample to meet established laboratory recovery criteria is cause to stop the analysis until the problem is resolved.

QUALITY CONTROL SECTION

- Quality Control Summary
- Laboratory Blanks
- Laboratory Control Sample
- Matrix Spike/Matrix Spike Duplicate Results
- Sample Custody Documentation

ANY: ABB ENVIRONMENTAL SERVICES, INC.

____ # 3J2201-24 MATRIX: WATER DATE RECEIVED: DATE EXTRACTED: 10/21/93 NA

DATE ANALYZED:

11/ 2/93

SAMPLE ID: TRIP BLANK

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene ND 1,2-Dichloroethane ND Bromodichloromethane ND 1,1-Dichloroethene ND Bromoform ND 1,2-Dichloroethene (Total) ND Bromomethane ND 1,2-Dichloropropane ND Carbon tetrachloride ND cis-1,3-Dichloropropene ND Chlorobenzene ND trans-1, 3-Dichloropropene ND Chloroethane ND Ethylbenzene ND 2-Chloroethylvinyl ether ND Methylene chloride 2 B C' oroform ND 1,1,2,2-Tetrachloroethane ND .cromethane ND Tetrachloroethene ND Dibromochloromethane ND Toluene ND 1.2-Dichlorobenzene ND 1,1,1-Trichloroethane ND 1,3-Dichlorobenzene ND 1,1,2-Trichloroethane ND 1,4-Dichlorobenzene Trichloroethene ND ND Dichlorodifluoromethane Trichlorofluoromethane ND ND 1,1-Dichloroethane ND Vinyl chloride ND Xylenes ND Methyl-tert-butylether ND

NOTE: ND (None Detected, lower detectable limit = 1 ug/L) as rec'd

ND* (None Detected, lower detectable limit = ug/L) as rec'd

-- (Not Analyzed)

SITROGATE RECOVERY: % ACCEPTABLE LIMITS in inchloromethane (HECD) 95 (78-122)

Afluorotoluene (PID) 107 (73-131)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/

LAB #: 3J2201-23 MATRIX : WATER

SAMPLE ID : EQUIPMENT BLANK BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 2/93	ND	1 m	g

TMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

B #: 3J2201-23 ATRIX : WATER

SAMPLE ID : EQUIPMENT BLANK BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT
Lead	11/ 3/93	ND	5 ug

COMPANY: ABB ENVIRONMENTAL SERVICES, INC.

LAB #: 3J2201-23 MATRIX: WATER

DATE RECEIVED: 10/27 DATE EXTRACTED: 10/26, 3

DATE ANALYZED: 10/30/93

HRS84297

SAMPLE ID: EQUIPMENT BLANK BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

POLYNUCLEAR AROMATIC HYDROCARBONS

METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a)anthracene	ND
Benzo(a)pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
Chrysene	ND
Dibenz (a, h) anthracene	ND
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND
	-1-

(None Detected, lower detectable limit = 5 NOTE: ND ND*

(None Detected, lower detectable limit =

(Not Analyzed)

ug/L) as rec'd ug/L) as rec'd

SURROGATE RECOVERY:	%	ACCEPTABLE	LIMITS
		WATER	SOLID
Nitrobenzene-d5	88	(22-135)	(10-155)
Fluorobiphenyl	85	(34-140)	(12-153)
Terphenyl-d14	65	(10-132)	(13-140)

PANY: ABB ENVIRONMENTAL SERVICES, INC.

B #: 3J2201-23

DATE RECEIVED: 10/21/93 DATE EXTRACTED: NA

MATRIX: WATER

DATE ANALYZED: 10/30/93

SAMPLE ID: EQUIPMENT BLANK BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

NOTE: ND (None Detected) as rec'd

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

¥

__omoform (ECD)

(41-152) (41-152)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC.

LAB # 3J2201-23 MATRIX: WATER DATE RECEIVED: 10/21
DATE EXTRACTED: NA
DATE ANALYZED: 11/ 7/93

SAMPLE ID: EOUIPMENT BLANK

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

VOLATILE ORGANICS METHOD 601/602 - GC HRS84297

Benzene Bromodichloromethane Bromoform	ND ND ND	1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene (Total)	ND ND
Bromomethane Carbon tetrachloride Chlorobenzene	ND ND ND	1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND
Chloroethane 2-Chloroethylvinyl ether Chloroform	ND ND ND	Ethylbenzene Methylene chloride 1,1,2,2-Tetrachloroethane	ND ND
Chloromethane Dibromochloromethane 1,2-Dichlorobenzene	ND ND ND	Tetrachloroethene Toluene 1,1,1-Trichloroethane	ND ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND	1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane	ND ND
1,1-Dichloroethane	ND	Vinyl chloride Xylenes Methyl-tert-butylether	ND ND

NOTE: ND (None Detected, lower detectable limit = 1 ug/L) as rec'd

ND* (None Detected, lower detectable limit = ug/L) as rec'd

-- (Not Analyzed)

SURROGATE RECOVERY: % ACCEPTABLE LIMITS
Bromochloromethane (HECD) 98 (78-122)
Trifluorotoluene (PID) 112 (73-131)

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

B #: 3J2201-22 MATRIX : WATER

SAMPLE ID : DUPLICATE 2 BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 2/93	ND	1 n	ng/I

COMPANY: ABB ENVIRONMENTAL SERVICES, INC.

LAB # 3J2201-23 MATRIX: WATER DATE RECEIVED: 10/21
DATE EXTRACTED: NA
DATE ANALYZED: 11/ 2/93

SAMPLE ID: EQUIPMENT BLANK

BOCA CHICA FLYING CLUB

CERTIFICATION #: E84059

VOLATILE ORGANICS METHOD 601/602 - GC HRS84297

ND 1,2-Dichloroethane ND Benzene Bromodichloromethane ND 1,1-Dichloroethene ND 1,2-Dichloroethene (Total) ND Bromoform ND Bromomethane ND 1,2-Dichloropropane ND Carbon tetrachloride ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene Chlorobenzene ND ND Chloroethane ND Ethylbenzene ND 2-Chloroethylvinyl ether Methylene chloride ND 14 B Chloroform ND 1,1,2,2-Tetrachloroethane ND Chloromethane ND Tetrachloroethene ND Dibromochloromethane ND MD Toluene 1,2-Dichlorobenzene ND 1,1,1-Trichloroethane ND 1,3-Dichlorobenzene ND 1,1,2-Trichloroethane ND 1.4-Dichlorobenzene Trichloroethene ND ND Dichlorodifluoromethane Trichlorofluoromethane ND ND Vinyl chloride 1,1-Dichloroethane ND ND Xvlenes ND Methyl-tert-butylether ND

NOTE: ND (None Detected, lower detectable limit = 1 ug/L) as rec'd ND* (None Detected, lower detectable limit = ug/L) as rec'd (Not Analyzed)

SURROGATE RECOVERY: % ACCEPTABLE LIMITS
Bromochloromethane (HECD) 94 (78-122)
Trifluorotoluene (PID) 110 (73-131)

PANY: ABB ENVIRONMENTAL SERVICES, INC.

__B # 3J2201-BK MATRIX: WATER

SAMPLE ID: LABORATORY BLANK

DATE RECEIVED: 10/21/93

DATE EXTRACTED: NA

DATE ANALYZED: 11/2/93

CERTIFICATION #: E84059

HRS84297

VOLATILE ORGANICS METHOD 601/602 - GC

Benzene	ND	1,2-Dichloroethane	ND
Bromodichloromethane	ND	1,1-Dichloroethene	ND
Bromoform	ND	1,2-Dichloroethene (Total)	
BIOMOTOLIK	ND	1,2-Dichioroethene (Total)	ND
Bromomethane	ND	1,2-Dichloropropane	ND
Carbon tetrachloride	ND	cis-1,3-Dichloropropene	ND
Chlorobenzene	ND	trans-1,3-Dichloropropene	ND
CH1010DeH2eHe	112	crams-1,3-Dichiolopropens	ND
Chloroethane	ND	Ethylbenzene	ND
2-Chloroethylvinyl ether	ND	Methylene chloride	ND
Chioroform	ND	1,1,2,2-Tetrachloroethane	
COLOTOR	ND	1,1,2,2-lettachioloethane	ND
Loromethane	ND	Tetrachloroethene	ND
Dibromochloromethane	ND	Toluene	ND
1,2-Dichlorobenzene	ND	1,1,1-Trichloroethane	ND
I, Z-DICHIOLODGHZGHG	11.0	1,1,1-111cm1010ecmane	ND
1,3-Dichlorobenzene	ND	1,1,2-Trichloroethane	ND
1,4-Dichlorobenzene	ND	Trichloroethene	ND
Dichlorodifluoromethane			
Dichiorodifidoromethane	ND	Trichlorofluoromethane	ND
1,1-Dichloroethane	ND	Vinyl chloride	ND
		Xylenes	ND
		—	
		Methyl-tert-butylether	ND

	ND* (None	Detected, low Detected, low Analyzed)				1	ug/L) ug/L)			
--	-----------	---	--	--	--	---	----------------	--	--	--

SURROGATE RECOVERY:	8	ACCEPTABLE LIMITS
nochloromethane (HECD)	78	(78-122)
fluorotoluene (PID)	112	(73-131)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC.

LAB #: 3J2201-BK MATRIX: WATER

DATE RECEIVED: 10/27 DATE EXTRACTED:

NA

DATE ANALYZED: 10/28/93

SAMPLE ID: LABORATORY BLANK

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

(None Detected) as rec'd NOTE: ND

(Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER

SOLID

B

Bromoform (ECD)

(41-152) (41-152)

PANY: ABB ENVIRONMENTAL SERVICES, INC.

B #: 3J2201-BK MATRIX: WATER

DATE RECEIVED: 10/21/93 DATE EXTRACTED:

NA

DATE ANALYZED: 10/29/93

SAMPLE ID: LABORATORY BLANK

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

NOTE: ND (None Detected) as rec'd

> J (Detected, but below quantitation limit; estimated value)

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER SOLID

ક

promoform (ECD)

(41-152) (41-152)

COMPANY: ABB ENVIRONMENTAL SERVICES, INC.

LAB #: 3J2201-BK

SAMPLE ID: LABORATORY BLANK

DATE RECEIVED: 10/21/ DATE EXTRACTED: DATE ANALYZED: 10/30/93

NA.

MATRIX: WATER

CERTIFICATION #: E84059

HRS84297

SELECTED ORGANIC COMPOUNDS ANALYTICAL REPORT

DETECTION

PARAMETER

RESULT (ug/L)

LIMIT

Ethylene dibromide

ND

0.02

(None Detected) as rec'd ND NOTE:

(Detected, but below quantitation limit; estimated value) J

SURROGATE RECOVERY:

ACCEPTABLE LIMITS

WATER

SOLID

Bromoform (ECD)

(41-152) (41-152)

PANY: ABB ENVIRONMENTAL SERVICES, INC.

__B #: 3J2201-BK MATRIX: WATER

DATE RECEIVED: 10/21/93 DATE EXTRACTED: 10/26/93 10/29/93

DATE ANALYZED:

SAMPLE ID: LABORATORY BLANK

CERTIFICATION #: E84059

HRS84297

POLYNUCLEAR AROMATIC HYDROCARBONS METHOD 625 HSL/TCL LIST - GC/MS

Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo (a) anthracene	ND
Benzo(a)pyrene	ND
Benzo(b) fluoranthene	ND
Benzo(ghi)perylene	ND
Benzo(k) fluoranthene	ND
C' ysene	ND
and the second s	
penz(a,h)anthracene	ND
Fluoranthene	ND
Fluorene	ND
Indeno(1,2,3-cd)pyrene	ND
1-Methylnaphthalene	ND
2-Methylnaphthalene	ND
Naphthalene	ND
Phenanthrene	ND
Pyrene	ND

NOTE:	ND	(None Detected,	lower detectable	limit = 5	ug/L) as rec'd
	ND*	(None Detected,	lower detectable	limit =	ug/L) as rec'd
		(Not Analyzed)			

STRROGATE RECOVERY:	*	ACCEPTABLE LIMIT	ITS	
Jenary.		WATER SOLID		
crobenzene-d5	80	(22-135) (10-15	5)	
riuorobiphenyl	82	(34-140) (12-15	3)	
Terphenyl-d14	88	(10-132) (13-14	0)	

COMPANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/

LAB #: 3J2201-BK MATRIX : WATER

SAMPLE ID : LABORATORY BLANK

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

ELEMENT	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT		
Lead	11/ 3/93	ND	5	u	

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

러 #: 3J2201-BK MATRIX : WATER

SAMPLE ID : LABORATORY BLANK

CERTIFICATION #: E84059

METALS ANALYTICAL REPORT

HRS84297

SELECTED LIST

Total metals analysis results - as received

PREPARATION -DETECTION ANALYSIS DATE RESULT ELEMENT LIMIT 11/ 3/93 Lead ND 5 ug/

COMPANY: ABB ENVIRONMENTAL SERVICES, INC.

DATE RECEIVED: 10/21/5

LAB #: 3J2201-BK MATRIX : WATER

SAMPLE ID : LABORATORY BLANK

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 1/93	ND	1	mg/L

PANY: ABB ENVIRONMENTAL SERVICES, INC. DATE RECEIVED: 10/21/93

B #: 3J2201-BK MATRIX : WATER

SAMPLE ID : LABORATORY BLANK

CERTIFICATION #: E84059

HRS84297

ANALYTICAL REPORT

PARAMETER	PREPARATION - ANALYSIS DATE	RESULT	DETECTION LIMIT	
Tot Recoverable Pet Hydrocarbons	11/ 2/93	ND	1	mg/L

MATRIX: WATER DATE EXTRACTED: N/A

METHOD: 601/2 ATE ANALYZED: 11/06/93 RUN ID: MA/MB02080

COMPOUND	ANALYTICAL RUN ID #	LCS %REC	QC LIMITS RPD %REC
Benzene Toluene Chlorobenzene 1,1-Dichloroethene Trichloroethene	MA/MB02080	112 115 110 89 101	21 80-123 19 80-119 23 71-118 42 61-144 30 69-129
Dichlorobromomethane		98	40 54-134

MATRIX : WATER METHOD : 601/2

RUN ID: MA/MB02506

DATE EXTRACTED: N/A
DATE ANALYZED: 11/01/93

COMPOUND	ANALYTICAL RUN ID #	LCS %REC	QC LIMITS RPD %REC
Benzene	MA/MB02506	105	21 80-123
Toluene	·	105	19 80-119
Chlorobenzene		101	23 71-118
1,1-Dichloroethene		108	42 61-144
Trichloroethene		108	30 69-129
Dichlorobromomethane		102	40 54-134

MATRIX: WATER

METHOD: 601/2

RUN ID : MA/MB02530

DATE EXTRACTED: N/A

DATE ANALYZED: 11/02/93

COMPOUND	ANALYTICAL RUN ID #	LCS %REC	QC LIMITS RPD %REC	
Benzene Toluene	MA/MB02530	110 109	21 80-123 19 80-119	
Chlorobenzene Trichloroethene		104 121	23 71-118 30 69-129	
Dichlorobromomethane		118	40 54-134	

MATRIX: WATER

METHOD : 601/2

RUN ID: MA/MB02080

DATE EXTRACTED: N/A

DATE ANALYZED: 11/06/93

COMPOUND	ANALYTICAL RUN ID #	LCS %REC	QC LIMITS RPD %REC	
Benzene	MA/MB02080	112	21 80-123	
Toluene	·	115	19 80-119	
Chlorobenzene		110	23 71-118	
1,1-Dichloroethene		89	42 61-144	
Trichloroethene		101	30 69-129	
Dichlorobromomethane		98	40 54-134	

MATRIX : WATER

METHOD: 601 Mod.

RUN ID : EDB2405

DATE EXTRACTED: N/A

DATE ANALYZED: 10/28/93

COMPOUND	ANALYTICAL	LCS	QC LIMITS
	RUN ID #	%REC	RPD %REC
Ethylene Dibromide	EDB2405		33 62-129

MATRIX: WATER

METHOD: 601 Mod.

RUN ID : EDB2429

DATE EXTRACTED: N/A

DATE ANALYZED: 10/29/93

COMPOUND	ANALYTICAL RUN ID #	LCS %REC	QC LIMITS RPD %REC	
Ethylene Dibromide	EDB2429	113	33 62-129	_

MATRIX: WATER

METHOD: 601 Mod.

RUN ID : EDB2453

DATE EXTRACTED: N/A

DATE ANALYZED: 10/30/93

COMPOUND	ANALYTICAL	LCS	QC LIMITS
	RUN ID #	%REC	RPD %REC
Ethylene Dibromide	EDB2453	124	33 62-129

LAB ID : LCS MATRIX : WATER

METHOD: 625

RUN ID : J0659

DATE EXTRACTED: 10/26/93 DATE ANALYZED: 10/29/93

COMPOUND	ANALYTICAL RUN ID #	LCS %REC	QC LIMITS RPD %REC
1-Methylnaphthalene	J0659	88	26 41-119
Fluorene		83	27 36-120
Chrysene		91	30 29-120
Pyrene		94	32 32-130
Acenaphthene		89	36 35-146
Naphthalene		91	36 32-140

MATRIX: WATER METHOD: 625

RUN ID: KMSA-093.D

DATE EXTRACTED: 10/26/93

DATE ANALYZED: 11/10/93

COMPOUND	ANALYTICAL RUN ID #	LCS %REC	QC LIMITS RPD %REC
Naphthalene	KMSA-093.D	88	36 32-140
1-Methylnaphthalene		91	26 41-119
Acenaphthene		83	36 35-146
Fluorene		86	27 36-120
Pyrene		78	32 32-130
Chrysene		85	30 29-120

MATRIX : WATER

ELEMENT	DATE PREPARED	DATE ANALYZED	LCS %REC	QC LIMITS RPD %REC	
Lead (furnace)			95	28 70-126	L

MATRIX : WATER

LABORATORY CONTROL SAMPLE RESULTS WET CHEMISTRY

PARAMETER	DATE PREPARED	DATE ANALYZED	LCS %REC	QC LIMITS RPD %REC	
TRPH (IR) TRPH (IR)	11/01/93	11/01/93 11/02/03	89 86	24 75-123 24 75-123	LC

MATRIX : WATER

LABORATORY CONTROL SAMPLE RESULTS WET CHEMISTRY

PARAMETER	DATE PREPARED	DATE ANALYZED	LCS %REC	QC LIMITS RPD %REC	
Total Dissolved Solids		10/26/93	99	15 80-112	LC.

LAB ID : 332201-1 DATE RECEIVED : 10/21/93

MATRIX: WATER DATE PREPARED: N/A

METHOD: 601/2 DATE ANALYZED: 11/03/93

RUN ID : MA/MB02536/7

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

COMPOUND	ANALYTICAL RUN ID #	MS %REC	MSD %REC	RPD	QC LIMITS RPD %REC
Benzene	MA/MB02536/7	111	102	8	15 70-117
Toluene		109	101	8	16 70-117
Chlorobenzene		110	98	12	24 58-133
1,1-Dichloroethene		117	102	14	28 43-131
Trichloroethene		118	105	12	47 49-143
Dichlorobromomethane		112	95	16	22 61-13

LAB ID : 3J2201-3

MATRIX: WATER

METHOD: 601 Mod.

RUN ID : EDB2494B

DATE RECEIVED: 10/21/93

DATE PREPARED : N/A

DATE ANALYZED: 11/05/93

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

COMPOUND	ANALYTICAL RUN ID #	MS %REC	MSD %REC	RPD	QC LIMITS RPD %REC
Ethylene Dibromide	EDB2494B	129	139	7	25 81-135

LAB ID : 3J2201-20 DATE RECEIVED : 10/21/93

MATRIX: WATER DATE PREPARED: N/A

METHOD: 601/2 DATE ANALYZED: 11/03/93 RUN ID: MA/MB02538/9

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

COMPOUND	ANALYTICAL RUN ID #	MS %REC	MSD %REC	RPD	QC LIMITS RPD %REC
Benzene	MA/MB02538/9	101	100	1	15 70-117
Toluene		63	65	3	16 70-117
Chlorobenzene		98	100	2	24 58-133
1,1-Dichloroethene		101	102	1	28 43-131
Trichloroethene		102	102	0	47 49-143
Dichlorobromomethane		97	99	2	22 61-1

LAB ID : 3J2201-20 DATE RECEIVED : 10/21/93
MATRIX : WATER DATE PREPARED : 10/26/93
METHOD : 625 DATE ANALYZED : 11/10/93

RUN ID: KMSA094.D/KMSA095.D

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

COMPOUND	ANALYTICAL RUN ID #	MS %REC	MSD %REC	RPD	QC LIMITS RPD %REC
Naphthalene	KMSA094.D/KMSA095.	80	113	34	23 25-97
1-Methylnaphthalene		82	114	33	24 48-101
Acenaphthene		78	104	29	24 57-104
Fluorene		76	102	29	28 34-118
rene -		63	109	53	30 58-148
rysene		72	102	34	36 48-118

LAB ID : 3J2201-1

MATRIX: WATER

METHOD: 601 Mod. RUN ID: EDB2293A DATE PREPARED: N/A
DATE ANALYZED: 11/05/93

DATE RECEIVED: 10/21/93

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

COMPOUND	ANALYTICAL RUN ID #	MS %REC	MSD %REC	RPD	QC LIMITS RPD %REC
Ethylene Dibromide	EDB2293A	145			25 81 - 135

LAB ID : 3J2201-20 DATE RECEIVED : 10/21/93
MATRIX : WATER DATE PREPARED : 10/26/93

METHOD: 625 DATE ANALYZED: 10/31/93

RUN ID : J0698/J0699

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

COMPOUND	ANALYTICAL RUN ID #	MS %REC	MSD %REC	RPD	QC LIMITS RPD %REC
Naphthalene	J0698/J0699	118	86	31	23 25-97
1-Methylnaphthalene	·	84	81	4	24 48-101
Acenaphthene		87	90	3	24 57-104
Fluorene		82	84	2	28 34-118
r ~ene		98	97	1	30 58-148
vsene		84	85	1	36 48-118

LAB ID : 3J2201-16

MATRIX: WATER

DATE RECEIVED : 10/21/93

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY INORGANIC PARAMETERS - METALS

ELEMENT	DATE PREPARED	DATE ANALYZED	MS %REC	MSD %REC RPI	RI		LAB ID
Lead (furnace)		11/03/93	86			76-124	3J2201-

ENSECO-WADSWORTH/ALERT LABORATORIES SAMPLE SHIPPER EVALUATION AND RECEIPT FORM

ونيت	ARB Project Name/Number: Boca Chica 7/La
چست	les Received By: Dexidit Sate Received: 10-21-93
Samp	is Evaluation Form By: 15 FWAL LAB No: 30201 8006
TAbe	of shipping container samples received in? WAL Cooler
	Client Cooler wal Shipper Box Other
Arry	"NO" responses or discrepancies should be explained in comments section.
1.	Were custody seals on shipping container(s) intact?
2.	Were custody papers properly included with samples?
3.	Were custody papers properly filled out (ink, signed, match labels)?
4.	Did all bottles arrive in good condition (unbroken)?
5.	Were all bottle labels complete (Sample No., date, signed, analysis preservatives)?
6.	Were correct bottles used for the tests indicated?
7.	Were proper sample preservation techniques indicated?
8.	Were samples received within adequate holding time?
9.	Were all VOA bottles checked for the presence of air bubbles?
10.	Were samples in direct contact with wet ice?
11.	Were samples accepted into the laboratory?
	Cooler # remp •c Cooler # remp •c
	Cooler # Temp _ + •c
Com	ents:

WADSWORTH/ALERT LABORATORIES Sampling, testing, mobile labs

Chain of Custody Hecord

(813) 621-0784 Fax (813) 623-6021

5910 Breckenridge Pkwy Suite H Tampa, FL 33610

Record ,		of	.خــ. ـــــــــــــــــــــــــــــــــ	
Λ	$\alpha \alpha \alpha \alpha$			

09083

_	~~						r													
nt:	0.		Project Name /			2							_			P	arame	ter		
A	BB-ES (a) Royal With	luty	ay Koch	CHICA FL	YIWG CLUS	No. Of CON- TAINERS		3		2/			. /	//		/ /			Remarks	
1/2	Date	Time	MATRIX	Sample	Location	IAMENO	\\ \	PAH	The state of the s		1 8gg	/5	?/ 		/		_			
	10/19/43	0840	Hzo	EGUIPME	J BLANK	8	2	+-	1		7		ļ		ļ	<u> </u>	ļ			
)		0935		M	w6	8	7	2	1		1		_	.	ļ	.	ļ <u>.</u>			
}			1_/_	DUPLI	CATÉ 1	8	2	. 2	1	1	2		_		<u> </u>					
<u> </u>		0955		mu	10	9	2,	2	1	1	1	1		_						
5		1005		MW	13	8	2	2	1	1	7	ļ	ļ							
<u>.</u>			<u> </u>	DUPLIC	ATÉ Z	8	2	2	1	1	2		<u> </u>	.	ļ	-				
<i>†</i>		1020		MW	4	8	2	2	1	1	7	-	ļ_							
3		1105	<u> </u>	mω		8	2		1	1	2	-	ļ							
<u>}</u>	 	1129	 		NZO	8	12	 	1	1	2		-			-				
0	 	1140	1-1-		w3	8	17		1	1	2	_				-			and the second s	
1_	<u> </u>	1200	<u>v</u>	<u> </u>	WIZ	8	1	12		11		1	L	1_	<u></u>	.l	l			
					Total Contain		1			Nu	nbe	r of (Coc	lers	in S	hipn	ent		Bailers	
pc	ort To:	Roger	Dueha		Transfer Number	Item Number(s)		Relin	quis	hed l	Зу / (Comp	pany	,		Acc	epted	By / Company	Date	Time
ldi	1 0				1			Rys	10	bl	/ ~	1	B	3	7	1	13	-/EWA	10/21/93	1500
¥	1 100 	presi	euro u	HCQ Woz	2		ļ 	,) 			
	D.) L. J. L	MOZ	3								•							
	19 1	junit.		"etjar	4															
		ubjei∛ s. /[⊋/ °′		in the state	5	, *														
					6															

Original Accompan

hipment

WADSWORTH/ALERT LABORATORIES Sampling, testing, mobile labs 5910 Breckenridge Pkwy. Suite H Tampa, FL 33610

kw<u>y</u>.

Chain of Cust. Record

(813) 621 0784 Fax (813) 623-6021 Record of

09085

															e de la companya de La companya de la co	3	The series		7		
		ter	aramete	Pa				1						V		Name / L		P			Client:
	***************************************	And the second s	T	\overline{I}	I I	7	7	1		7	M		No.	Lyint clib	CHICA FL	30CA	13		-E5	488	
				-f		/ /	/		₹/	: /.	É		Of		Project #:				g bea	r(s)	Sample
		•	1.			' /	1. /				3/] /:	CON		e gesta generalik		Cach	- Gay K	Wr.	v 1/2	
	Remarks	Н	<i>[</i>				7	Ι,	[/ L	/ 4	3/ ,	$\perp I = I$	TAINE					(J		1 4	Hom
		1 4	/	/			ド /		TRPH	METAL S	PAH	\ \delta \		ple Location	Samp	ATRIX	MA	Time	ate	D	llém:
	** ***********************************				f_{-}	-{-			1	-3					1	11	 		_		61
-						-	4_	2	1	_!	2	12	9	w 14D	M	Hzu	<u>'</u>	1210	9/93	1015	11
								2	1	1	2	2	8	nw5	1	1	1	1218	1		52
								2	ı	١.	2	2	8	mwz	/	-	1	1420			23
								2	ı	l	2	2	8	mw 16				1445			(4
						-		2		i	2	2	8	mw 8		1		1500			1 5
						-	- -	Z			2	12		MWIZ		1-	1				7 6
						-				,	2	2			 	1	╂	1530			
					_			2	1_		t - t	1—	E	hw9		-		1550			7
						-		2	1	-	て	12	8	nw18	11.	 	ļ	1600			8 8
<u> </u>		-8-7-9-16-y				12		ı	ı	1	긱	2	. 8	WIED	 	1	1	1605			5 9
				-				2	l	l	2	2	. 0	hwig 🥱	n	i i		1630			10
			.:		. 3			2	(1	7	1	8	mw1	,	Ą	,	1700			11.11
	Bailers 🛊	5	ent	ipme	n Sh	olers	of Coc	ber	Nun					Tota Contair			į.	1			
	. T					٠,							Item	Transfer		am	ueho	igar Di	P	rt To:	Repo
Time	Date	By / Company	epted B	Acce	1	y	mpan	y / Co	ed B	uish	lelinq	i i H	Number(s)	Number	e de la Carte		••	gue -	1	• . •	
-N	1 -, 7 -	1	11	1.			7		// /		b	-				* ;	\$5. A.S. 2	nts: 🎎 🗚	Comme	onal C	Addit
1500	10/21/93	TENAL	131	ł z	1/	7	MY	<u>レ/</u>	u	0	M	≰		1	: *	607	ul /	N+ 1 60	TRA		
); ;			Ŋ,		. de						2	HCP	w/ 1	d	meser	20		
		THE THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRE			7		٠,							3	1 4443	ر. مدا لد.	٠ ٥٠	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ا - و	े वर्षाः भव ्यपृद्धिः	1,5 las
	, , , , , , , , , , , , , , , , , , ,	,					•									911	·	s pu	· 1		
					- 									4							
		,								1				5							
		1										1		6							,
3	D/21/9	/EWAL)		7		MX	<u>ا</u>		-0	Zy.	7		5	HCD HUB3	w/ w	ol / sevi	nts: plt + 60 presser	TRA	onal C	Additi

Chain of Custouy Record

5910 Breckenridge Pkwy. Suite H Tampa, FL 33610

(813) 621-0784 Fax (813) 623-6021

Record	101	

09087

Client:		``																			
CHOUL	ABB-E		Project Name / Lo		YWA CLAR	. ,	No.	Parameter													
Sample		· Ou	DOCA	Project #:	YNG CLUB	'	Of	No.	1 1	<u>\</u>					/		/				
	IL FISH	m Jan	Koch	• •	ş	C	ON-	1.\	'	31			. /								
		- 1 - 1		17.		TAI	ners /	(i)	. / :	4/	ι [.	12	/ל						F	Remarks	
ltem #	Date	∷Time	MATRIX	Samp	ole Location		1/	ပ္ပံုနိ		Tage.	EDB.	R	7	/	/		/				
			ļ,						1/3		14	├	 	 	ł	(·					
7_1_	10/14/63	1920	tho	M	w7				- 1	1	2									¥	
2/2	10/15/53	1559	Hro	TRIP	BLANK		3 3	3			ļ	ļ			ļ						
3										<u> </u>				_						and the same of the control of the c	
4															<u> </u>						
5																					
6			,																		
7			,							1											
8			1				.				İ	<u> </u>		1							- And
9					3					1		<u> </u>									
10				1							-				-						
11										1											
	· • ()			<u> </u>	Tota Contai		11	1		Nur	nbe	r of (Coo	lers	in SI	nipm	ent	5-		Bailers	
Repo	nt To:	Roger	DUBHY	Aun	Transfer Number	Item Numbe		Reli	nquis	hed E	By / C	Comp	any		١	Acc	epted	By / Compa	ny	Date	Time
Addit					1			F	2			/ر	14	3 <i>B</i>	امر	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5,	1-/E	WAL	10-2193	1500
**	e jar		wor pu w/ H	cl	2				/												
	Ph	premi	1 of 1 for	wy	3				·						. ~~~		- -				
			e e e e e e e e e e e e e e e e e e e	では、 以上 The Carter	4														programme and the second of		
		્રા (ફેરફ ચેફ્ટ		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			1 - 1 - 12 -											own on the same			
				13 () () () () () () () () () (6			; v •	; ·												

Original Accompa

Shipment